-

=
kea

Kea Administrator Reference Manual

Documentation
Release 2.4.0

Internet Systems Consortium

Aug 08, 2023

CONTENTS

1 Introduction 3
1.1 Supported Platforms 3
1.1.1 Regularly Tested Platforms 3

1.1.2 Best-Effort e 4

1.1.3 Community-Maintained e e e e 4

1.1.4 Unsupported Platforms e e 4

1.2 Required Software at Runtime 4

1.3 KeaSoftware L e e e e e e e 5

2 Quick Start 7
2.1 Quick Start Guide Using tarball L 7

2.2 Quick Start Guide Using Native Packages 7

2.3 Quick Start Guide for DHCPv4 and DHCPv6 Services 9
2.4 Running the Kea Servers Directly e 10

3 Installation 11
3.1 Packages e 11
3.1.1 Installation From Cloudsmith Packages 11

3.1.2 Caveats When Upgrading Kea Packages 12

3.2 Installation Hierarchy e 12

3.3 BuildRequirements L 13
3.4 Installation From Source Lo e e e 14
34.1 Download Tar File e 14

342 Retrieve From Git L L e 14

343 Configure Beforethe Build L 14

344 Build 16

345 Install . .. oL e 16

34.6 Cross-Building e 17

3.5 DHCP Database Installation and Configuration 17
3.5.1 Building with MySQL Support e e 17

3.5.2 Building with PostgreSQL support L 17

3.6 Hammer Building Tool 18

3.7 Running Kea From a Non-root AccountonLinux 19

3.8 Deprecated Features i e e e e e e e e e e e 21
3.8.1 Sysrepo 0.x0r 1.X . . o o o o e e e e e e e e e e 21

3.8.2 libreloadcommand e e 21

4 Kea Database Administration 23
4.1 Databases and Schema Versions L 23
42 Thekea-adminTool e 23

4.3 Supported Backends
43.1 Memfile e e
4.3.1.1 Upgrading Memfile Lease Files From an Earlier Versionof Kea

432 MySQL . . e e e e
43.2.1 MySQLS5.7vs MySQL 8 vs MariaDB 10and 11
4.3.2.2 First-Time Creation of the MySQL Database
4.3.2.3 Upgrading a MySQL Database From an Earlier Versionof Kea
4.3.2.4 Improved Performance With MySQL

433 PostgreSQL e e e
4.3.3.1 First-Time Creation of the PostgreSQL Database
4.3.3.2 Initialize the PostgreSQL Database Using kea-admin
4.3.3.3 Upgrading a PostgreSQL Database From an Earlier Versionof Kea
4.3.3.4 PostgreSQL without OpenSSL support
4.3.3.5 Improved Performance With PostgreSQL

4.3.4 Using Read-Only Databases With Host Reservations
4.3.5 Limitations Related to the Use of SQL Databases
4351 Year2038ISSUE v v v v e e e e e e e e

Kea Configuration

5.1 JSON Configuration ittt e e e e e
5.1 JSONSYNtax . . .o v vt i e e e e e e e e e
5.1.2 Comments and User Context ot v it i i it ittt
5.1.3 Simplified Notation e e e

5.2 KeaConfiguration Backend L o L
5.2.1 Applicability oL e e
5.2.2 CB Capabilities and Limitations
523 CBCOMPONENLS . . v v v v v o e
5.2.4 Configuration Sharing and Server Tags o
5.2.5 Configuration Files Inclusion Lo oo

Managing Kea with keactrl

6.1 OVEIVIEW o e e e e
6.2 Command Line Options e
6.3 The keactrl Configuration File L
6.4 Commands e e e
6.5 Overriding the Server Selection e e e e
6.6 Native Packages and systemd L e e e
The Kea Control Agent
7.1 Overview of the Kea Control Agent it
7.2 Configuration e e e
7.3 Secure Connectionso e e
7.4 Starting and Stopping the Control Agent. L e
7.5 Connecting to the Control Agent e e
The DHCPv4 Server
8.1 Starting and Stopping the DHCPv4 Server e
8.2 DHCPv4 Server Configuration o ittt e e e e
82.1 Introduction e e e e e
8.2.2 Lease Storage i it i e e e e e e e e e e e e e e e e e e
8.2.2.1 Memfile - Basic Storage forLeases
8.2.2.2 Why Is Lease File Cleanup Necessary?
8.2.2.3 Lease Database Configuration
8.2.2.4 Tuning Database Timeouts v v i v v i vttt
8.2.3 HOStS StOrage o i e e e e e e e e e e

33
33
33
34
37
37
37
38
39
39
41

43
43
43
43
45
47
48

49
49
49
52
52
53

8.3

8.4

8.2.3.1 DHCPv4 Hosts Database Configuration 64

8.2.3.2 Using Read-Only Databases for Host Reservations With DHCPv4 65

8.2.3.3 Tuning Database Timeouts for Hosts Storage 66
8.2.4 Imterface Configuration e 66
8.2.5 Issues With Unicast Responses to DHCPINFORM 69
8.2.6 IPv4 SubnetIdentifier 70
8277 IPv4SubnetPrefix 70
8.2.8 Configuration of [IPv4 Address Pools 71
8.2.9 Sending T1 (Option 58) and T2 (Option59) oo, 73
8.2.10 Standard DHCPv4 Options o o v ittt et e e e e e e e 74
8.2.11 Custom DHCPv4 Options ot it s ettt e e e e e 84
8.2.12 DHCPv4 Private Options o o i ittt e e e e e e 86
8.2.13 DHCPv4 Vendor-Specific Options i v v ittt e 89
8.2.14 Nested DHCPv4 Options (Custom Option Spaces) v o v v v v v v v v oo 93
8.2.15 Unspecified Parameters for DHCPv4 Option Configuration 95
8.2.16 Supportfor Long Options e 96
8.2.17 Stateless Configuration of DHCPv4 Clients 97
8.2.18 Client Classificationin DHCPv4 98

8.2.18.1 Setting Fixed Fields in Classification 99

8.2.18.2 Using Vendor Class Information in Classification 99

8.2.18.3 Defining and Using Custom Classes 100

8.2.18.4 Required Classification 101
8.2.19 DDNSfor DHCPv4 102

8.2.19.1 DHCP-DDNS Server Connectivity v v i v .. 105

8.2.19.2 When Does the kea-dhcp4 Server Generate a DDNS Request? 106

8.2.19.3 kea-dhcp4 Name Generation for DDNS Update Requests 107

8.2.19.4 Sanitizing Client Host Name and FQDN Names 108
8.2.20 NextServer (siaddr) e e e e 109
8.2.21 Echoing Client-ID (RFC 6842) i e 110
8.2.22 Using Client Identifier and Hardware Address 110
8.2.23 Authoritative DHCPv4 Server Behavior 112
8.2.24 DHCPv4-over-DHCPv6: DHCPv4 Side 112
8.2.25 Sanity Checks in DHCPv4 e 113
8.2.26 Storing Extended Lease Information, 114
8.2.27 Multi-Threading Settings L i e e e e e e 115
8.2.28 Multi-Threading Settings With Different Database Backends 116
8.2.29 IPv6-Only Preferred Networks 116
8230 LeaseCaching e 117
8.2.31 Temporary Allocation on DHCPDISCOVER 118
Host Reservations in DHCPv4 e 119
8.3.1 Address Reservation Types e 120
8.3.2 Conflicts in DHCPv4 Reservations vt i it 121
833 ReservingaHostname e 122
8.3.4 Including Specific DHCPv4 Options in Reservations 123
8.3.5 Reserving Next Server, Server Hostname, and Boot File Name 124
8.3.6 Reserving Client Classesin DHCPv4 125
8.3.7 Storing Host Reservations in MySQL or PostgreSQL 126
8.3.8 Fine-Tuning DHCPv4 Host Reservation 126
8.3.9 Global Reservationsin DHCPv4 132
8.3.10 Pool Selection with Client Class Reservations 134
8.3.11 Subnet Selection with Client Class Reservations 135
8.3.12 Multiple Reservations for the Same IP o oo 136
8.3.13 Host Reservations as Basic Access Control 138
Shared Networks in DHCPv4 e 139

8.4.1 Local and Relayed Traffic in Shared Networks 142

8.4.2 Client Classification in Shared Networks 145

8.4.3 Host Reservations in Shared Networks 147

8.5 Server Identifier in DHCPv4 0 148
8.6 How the DHCPv4 Server Selects a Subnet for the Client 148
8.6.1 Using a Specific Relay AgentforaSubnet 149

8.6.2 Segregating IPv4 Clients in a Cable Network 150

8.7 Duplicate Addresses (DHCPDECLINE Support) oo i i i i it 150
8.8 Statistics in the DHCPv4 Server e 151
8.9 Management API for the DHCPv4 Server 156
8.10 User Contexts in IPv4 o L e 158
8.11 Supported DHCP Standards e 159
8.11.1 Known RFC Violations e 160

8.12 DHCPv4 Server Limitations o e 160
8.13 Kea DHCPv4 Server Examples e 160
8.14 Configuration Backend in DHCPv4 e 160
8.14.1 Supported Parameterso e 161
8.14.2 Enabling the Configuration Backend 162

8.15 Kea DHCPv4 Compatibility Configuration Parameters 164
8.15.1 LenientOption Parsing e 164
8.15.2 Ignore DHCP Server Identifier, 165
8.15.3 Ignore RAI Link Selection e 165
8.15.4 Exclude First Last Addresses in /24 Subnetsor Larger 165

8.16 Address Allocation Strategies in DHCPv4 e 165
8.16.1 Allocators Comparison e e 166
8.16.2 Iterative Allocator L e e e e e e e 166
8.16.3 Random Allocator e e e e 167
8.16.4 Free Lease Queue Allocator i i it e e e e 167

The DHCPv6 Server 169
9.1 Starting and Stopping the DHCPv6 Server 169
9.2 DHCPv6 Server Configuration v v v v v et e e e e e e e e e e 170
9.2.1 Introduction e e e e 170

022 Lease StOrage« v v e e e e e e e e e e e e e 173
9.2.2.1 Memfile - Basic Storage for Leases 173

9.2.2.2 Why Is Lease File Cleanup Necessary? 174

9.2.2.3 Lease Database Configuration 174

9.2.2.4 Tuning Database Timeouts it 176

0.2.3 HOSES StOrage v v v ot e e e e e e e e e e e e e e e e e 177
9.2.3.1 DHCPv6 Hosts Database Configuration 177

9.2.3.2 Using Read-Only Databases for Host Reservations with DHCPv6 179

9.2.3.3 Tuning Database Timeouts for Hosts Storage 179

9.2.4 Interface Configuration L e e e e e 179

9.2.5 IPv6 SubnetIdentifier. 181

9.2.6 IPv6SubnetPrefix 182

9.2.7 Unicast Traffic Support 182

9.2.8 Configuration of IPv6 Address Pools o 183

9.2.9 Subnet and Prefix Delegation Pools o oo 184
9.2.10 Prefix Exclude Option e e e e 185
9.2.11 Standard DHCPv6 Options i ittt 186
9.2.12 Common Softwire46 Options e 194
9.2.12.1 Softwire46 Container Options i 195

9.2.122 S46RuleOption 195

9.2.123 S46BROption 196

9.3

9.4

9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14
9.15

92,124 S46DMR Option e 196

9.2.12.5 S46 IPv4/IPv6 Address Binding Option 196

9.2.12.6 S46 Port Parameters e 196
9.2.13 Custom DHCPv6 Options i e 197
9.2.14 DHCPv6 Vendor-Specific Options oo it i 199
9.2.15 Nested DHCPv6 Options (Custom Option Spaces) 201
9.2.16 Unspecified Parameters for DHCPv6 Option Configuration 203
9.2.17 Controlling the Values Sent for Tl and T2 Times 204
9.2.18 IPv6 Subnet Selection. L. e 205
9.2.19 Rapid Commit e 205
9.220 DHCPvORelays e 206
9.2.21 Relay-Supplied Options e e e 207
9.2.22 Client Classificationin DHCPv6 207

9.2.22.1 Defining and Using Custom Classes 208

9.2.22.2 Required Classification L o 209
9.223 DDNSfor DHCPVO 210

9.2.23.1 DHCP-DDNS Server Connectivity 213

9.2.23.2 When Does the kea-dhcp6 Server Generate a DDNS Request? 214

9.2.23.3 kea-dhcp6 Name Generation for DDNS Update Requests 215

9.2.23.4 Sanitizing Client FQDN Names 216
9.2.24 DHCPv4-over-DHCPv6: DHCPv6 Side 217
9.2.25 Sanity Checksin DHCPv6 219
9.2.26 Storing Extended Lease Information, 219
9.2.27 Multi-Threading Settings o 0 v i e e e e e e e 221
9.2.28 Multi-Threading Settings With Different Database Backends 221
9.229 LeaseCaching e 222
Host Reservations in DHCPv6O e 223
9.3.1 Address/Prefix Reservation Types e 224
9.3.2 Conflicts in DHCPv6 Reservations 225
9.3.3 ReservingaHostname e e e 226
9.3.4 Including Specific DHCPv6 Options in Reservations 227
9.3.5 Reserving Client Classesin DHCPv6 228
9.3.6 Storing Host Reservations in MySQL or PostgreSQL 229
9.3.7 Fine-Tuning DHCPv6 Host Reservation 230
9.3.8 Global Reservationsin DHCPv6 235
9.3.9 Pool Selection with Client Class Reservations 237
9.3.10 Subnet Selection with Client Class Reservations 238
9.3.11 Multiple Reservations forthe Same IP 239
9.3.12 Host Reservations as Basic Access Control, 240
Shared Networks in DHCPVO e 242
9.4.1 Local and Relayed Traffic in Shared Networks 246
9.4.2 Client Classification in Shared Networks 248
9.4.3 Host Reservations in Shared Networks 250
Server Identifier in DHCPvO e 251
DHCPvO Data Directory o v o o e i e 254
Stateless DHCPv6 (INFORMATION-REQUEST Message) o oo v v v v v oo oo .. 254
Support for RFC 7550 (now part of REFC 8415) 255
Using a Specific Relay AgentforaSubnet o 255
Segregating IPv6 Clients in a Cable Network 256
MAC/Hardware Addresses in DHCPvG 257
Duplicate Addresses (DHCPDECLINE Support) o0 vttt 259
Statistics in the DHCPvO Servero 0 e 260
Management API for the DHCPv6 Server i i 266
User Contexts in IPvO L L e 267

9.16 Supported DHCPv6 Standards e
9.17 DHCPv6 Server Limitations i e e e
9.18 Kea DHCPv6 Server Examples e e e e
9.19 Configuration Backendin DHCPv6 o
9.19.1 Supported Parameters oL
9.19.2 Enabling the Configuration Backend
9.20 Kea DHCPv6 Compatibility Configuration Parameters
9.20.1 Lenient Option Parsing e e e e
9.21 Allocation Strategiesin DHCPv6 e
9.21.1 Allocators CompariSon e
9.21.2 Tterative Allocator L e e e
9.21.3 Random Allocator e e e e e e
9.21.4 Free Lease Queue Allocator (Prefix DelegationOnly)

10 Database Connectivity

11 Lease Expiration

11.1 Lease Reclamation e e e e e e
11.2 Lease Reclamation Configuration Parameters
11.3 Configuring Lease Reclamation e
11.4 Configuring Lease Affinity o e e e
11.5 Reclaiming Expired Leases viaCommand

12 Congestion Handling

12.1 Whatis Congestion? i e e e e e
12.2 Configuring Congestion Handling

13 The DHCP-DDNS Server

13.1 OVerview o o e e e e e e
13.1.1 DNS Server Selection o e e e e e e
13.1.2 ConflictResolution e
13.1.3 Dual-Stack Environments Lo

13.2 Starting and Stopping the DHCP-DDNS Server v i i ittt

13.3 Configuring the DHCP-DDNS Server i
13.3.1 Global Server Parameters L
13.3.2 Management API forthe D2 Server
1333 TSIGKey List. o o o o
13.3.4 Forward DDNS e e e e

13.3.4.1 Adding Forward DDNS Domains
13.3.4.1.1 Adding Forward DNS Servers

13.3.5 Reverse DDNS o e
13.3.5.1 Adding Reverse DDNS Domains
13.3.5.1.1 Adding Reverse DNS Servers

13.3.5.2 Per-DNS-Server TSIGKeys o o e

13.3.6 User Contexts in DDNS e
13.3.7 Example DHCP-DDNS Server Configuration

13.4 DHCP-DDNS Server Statistics« o o v v it it e e e e e e e e e e e e
13.4.1 NCR Satistics« o v v vt e e e e e e e e e e e e e e e
13.4.2 DNS Update Statistics v v v v v e i e e e e e e e e e e e e e e e e e
13.4.3 Per-TSIG-Key DNS Update Statistics o ittt

13.5 DHCP-DDNS Server Limitations 0. 0 i e e e

13.6 Supported Standards e e e e e e e e

14 The LFC Process

141 OVErVIEW o o o o e e e e e e e e e

269

277

279
279
280
280
282
283

285
285
285

287
287
287
288
288
288
289
290
290
292
293
293
294
295
295
296
296
298
298
300
300
301
301
301
301

303

vi

142 Command-Line Options o oo e e e e 303

15 Client Classification 305
15.1 Client Classification OVEIVIEW o v v i i e 305
15.1.1 Classification Steps o o i e e e e e e 306

15.2 Built-in Client CIasses o i v i e e e e e e e e e e e e e 307
15.3 Using Expressions in Classification L 308
153.1 Logical Operators o o i e e e 311
1532 Substring e 311
1533 Concat. o e e e e e e e e e e e e e e e e 311
15.3.4 Split o e e e e e e 312
1535 Ifelse . . o o oo e e 312
15.3.6 Hexstring o o o e e e e e e e e e e e e 312

154 Configuring Classes o v i i ittt e e e e e e e e e e e e 312
15.4.1 Template Classes o v i i it e e e e e e e e 314

15.5 Using Static Host Reservations in Classification. 316
15.6 Configuring Subnets With Class Information 317
15.7 Configuring Pools With Class Information 318
158 Using Classes o oo it e e 320
159 Classesand HOOKS o 0 i e e e e e e e e e e 320
15.10 Debugging EXpressions o e e e e e e 320
16 Hook Libraries 323
16.1 Introduction e e e e e e e e e e e e 323
16.2 Installing Hook Packages 0 i e e e e e 324
16.3 Configuring Hook Libraries e e 325
16.3.1 Order of Configuration: e 326
16.3.2 User Contextsin Hooks e 327

16.4 Available Hook Libraries e e e e e e e e 328
16.5 1libdhcp_bootp.so: Support for BOOTP Clients 331
16.5.1 BOOTP Hooks Limitations ottt i e e e e 332

16.6 libdhcp_cb_cmds.so: Configuration Backend Commands 332
16.6.1 Command Structure o e e e e e e e e e e e e e e e e e e 333
16.6.2 Control Commands for DHCP Servers 334
16.6.3 Metadata e e e e e e e e e e e e e e e e 334
16.6.4 The remote-server4-del, remote-server6-del Commands 334
16.6.5 The remote-server4-get, remote-server6-get Commands 335
16.6.6 The remote-server4-get-all, remote-server6-get-all Commands 336
16.6.7 The remote-server4-set, remote-server6-set Commands 337

16.6.8 The remote-global-parameter4-del, remote-global-parameter6-del Commands . 338
16.6.9 The remote-global-parameter4-get, remote-global-parameter6-get Commands . 338
16.6.10 The remote-global-parameter4-get-all, remote-global-parameter6-get-all

Commands e e e e 340
16.6.11 The remote-global-parameter4-set, remote-global-parameter6-set Commands . 341
16.6.12 The remote-network4-del, remote-network6-del Commands 341
16.6.13 The remote-network4-get, remote-network6-get Commands 342
16.6.14 The remote-network4-1list, remote-network6-1list Commands 342
16.6.15 The remote-network4-set, remote-network6-set Commands 344
16.6.16 The remote-option-def4-del, remote-option-def6-del Commands 345
16.6.17 The remote-option-def4-get, remote-option-def6-get Commands 346
16.6.18 The remote-option-def4-get-all, remote-option-def6-get-all Commands . . . 346
16.6.19 The remote-option-def4-set, remote-option-def6-set Commands 347
16.6.20 The remote-option4-global-del, remote-option6-global-del Commands 348
16.6.21 The remote-option4-global-get, remote-option6-global-get Commands 348

vii

16.6.22 The remote-option4-global-get-all, remote-option6-global-get-all Commands 349

16.6.23 The remote-option4-global-set, remote-option6-global-set Commands 349
16.6.24 The remote-optiond-network-del, remote-option6-network-del Commands .. . 350
16.6.25 The remote-optiond-network-set, remote-option6-network-set Commands . .. 351
16.6.26 The remote-option6-pd-pool-del Command 352
16.6.27 The remote-option6-pd-pool-set Command 352
16.6.28 The remote-option4-pool-del, remote-option6-pool-del Commands 353
16.6.29 The remote-option4-pool-set, remote-option6-pool-set Commands 354
16.6.30 The remote-option4-subnet-del, remote-option6-subnet-del Commands 354
16.6.31 The remote-option4-subnet-set, remote-option6-subnet-set Commands 355
16.6.32 The remote-subnet4-del-by-id, remote-subnet6-del-by-id Commands 356
16.6.33 The remote-subnet4-del-by-prefix, remote-subnet6-del-by-prefix Commands . 356
16.6.34 The remote-subnet4-get-by-id, remote-subnet6-get-by-id Commands 357
16.6.35 The remote-subnet4-get-by-prefix, remote-subnet6-get-by-prefix Commands . 357
16.6.36 The remote-subnet4-1list, remote-subnet6-list Commands 358
16.6.37 The remote-subnet4-set, remote-subnet6-set Commands 359
16.6.38 The remote-class4-del, remote-class6-del Commands 361
16.6.39 The remote-class4-get, remote-class6-get Commands 361
16.6.40 The remote-class4-get-all, remote-class6-get-all Commands 362
16.6.41 The remote-class4-set, remote-class6-set Commands 363

16.7 libdhcp_class_cmds.so: ClassCommands v v v vt vt i et e e e o 364
16.7.1 The class-addCommand i i i it et e e e 365
16.7.2 The class-update Command i e 365
16.7.3 The class-del Command i i ittt e e 366
16.7.4 The class-list Command i i i i ittt ittt e e 367
16.7.5 The class-getCommand i i i it ittt e 367

16.8 libdhcp_ddns_tuning.so: DDNS Tuning 368
16.8.1 Procedural Host-Name Generation v i v vttt e e e e 369
16.8.1.1 DHCPv4 Host-Name Generation v v v v v i v e .. 370

16.8.1.2 DHCPv6 Host-Name Generation v v v v i v v v .. 370

16.8.2 Skipping DDNS Updates e 371

169 1libdhcp_flex_id.so: Flexible Identifier for Host Reservations 372
16.9.1 The replace-client-idFlag 374
16.9.2 The ignore-iaidFlag. e 375

16.10 1libdhcp_flex_option.so: Flexible Option Actions for Option Value Settings 376
16.11 1ibddns_gss_tsig.so: Sign DNS Updates With GSS-TSIG 378
16.12 1ibdhcp_ha.so: High Availability Outage Resilience for Kea Servers 379
16.12.1 Supported Configurations 379
16.12.2 Clocks on Active SErvers v i i it e e e e e e e e e e e e 380
16.12.3 HTTPS Support o o v o o e 381
16.12.4 Server States e 384
16.12.5 Scope Transition in a Partner-Down Case 387
16.12.6 Load-Balancing Configuration e 387
16.12.7 Load Balancing With Advanced Classification 391
16.12.8 Hot-Standby Configuration o i e e e 393
16.12.9 Passive-Backup Configuration o 395
16.12.10Lease Information Sharing Lo Lo 396
16.12.11Controlling Lease-Page Size Limit 397
1612 12TIMEOULS v v o o e 398
16.12.13Pausing the HA State Machine e 399
16.12.14Control Agent Configuration i it e e e 401
16.12.15Multi-Threaded Configuration (HA+MT) 402
16.12.16Parked-Packet Limit 404
16.12.17Controlled Shutdown and Maintenance of DHCP Servers 405

viii

16.12.18Upgrading From Older HA Versions 406

16.12.19Control Commands for High Availability 406
16.12.19.1The ha-sync Command o i v it ittt it e 406
16.12.19.2The ha-scopes Command i i i i 407
16.12.19.3The ha-continue Command 407
16.12.19.4The ha-heartbeat Command 408
16.12.19.5The status-get Command 409
16.12.19.6The ha-maintenance-start Command 411
16.12.19.7The ha-maintenance-cancel Command 411
16.12.19.8The ha-maintenance-notify Command 411
16.12.19.9The ha-reset Command 412
16.12.19.10he ha-sync-complete-notify Command 412

16.13 libdhcp_host_cache.so: Host Cache Reservations for Improved Performance 413

16.13.1 The cache-flush Command 414

16.13.2 The cache-clear Command i i i ittt it 414

16.13.3 The cache-size Command i ittt 414

16.13.4 The cache-write Command i i i i ittt et e 414

16.13.5 The cache-load Command ittt 415

16.13.6 The cache-get Command i i i i ittt e e e e e e e 415

16.13.7 The cache-get-by-idCommand 415

16.13.8 The cache-insert Command it 416

16.13.9 The cache-remove Command i i it ittt et 417

16.14 1libdhcp_host_cmds.so: Host Commands 417

16.14.1 The subnet-id Parameter e e 418

16.14.2 The operation-target Parameter 419

16.14.3 The reservation-addCommand 419

16.14.4 The reservation-get Command 421

16.14.5 The reservation-get-all Command 423

16.14.6 The reservation-get-page Command 424

16.14.7 The reservation-get-by-addressCommand 426

16.14.8 The reservation-get-by-hostname Command 430

16.14.9 The reservation-get-by-idCommand 431

16.14.10The reservation-del Command 432

16.14.11The reservation-update Command 434

16.14.12General Mentions v i e e e e e e e e e e e e e 436

16.15 1ibdhcp_lease_cmds.so: Lease Commands for Easier Lease Management 436

16.15.1 The lease4-add, lease6-add Commands o i 437

16.15.2 The lease6-bulk-apply Command 439

16.15.3 The lease4d-get, lease6-get Commands 441

16.15.4 The lease4-get-all, lease6-get-all Commands 443

16.15.5 The leased4-get-page, lease6-get-page Commands 444

16.15.6 The lease4-get-by-*, lease6-get-by-* Commands 446

16.15.7 The lease4-del, lease6-del Commands v v v v v v v v v, 446

16.15.8 The lease4-update, lease6-update Commands 447

16.15.9 The lease4-wipe, lease6-wipe Commands v ... 448

16.15.10The lease4-resend-ddns, lease6-resend-ddns Commands 449

16.15.11The leased4-write, lease6-write Commands 450

16.16 1libdhcp_lease_query.so: Leasequery Support oot 450

16.16.1 DHCPV4 Leasequery v v v v v v it e e et e e e e e e e e e e 450

16.16.2 DHCPv4 Leasequery Configuration o i v v i ittt e oo 451

16.16.3 DHCPVO Leasequery v v v v v vt e e e e e e e e e e e e e e e e e 452

16.16.4 DHCPv6 Leasequery Configuration 454

16.16.5 DHCPv4 Bulk Leasequery o oo i i ittt i e e e e 454

16.16.6 DHCPvO Bulk Leasequery o ottt it ettt e e e 455

16.16.7 Bulk Leasequery Configuration e 456

16.16.8 Updating Existing Leases in SQL Lease Backends 458

16.17 libdhcp_legal_log.so: Forensic Logging 458
16.17.1 LogFile Naming e 459
16.17.2 Configuring the Forensic Logging Hooks 459
16.17.3 DHCPv4 Log Entries et e 463
16.17.4 DHCPvO Log Entries i i i e e e e e e e e e e e e e 467
16.17.5 Database Backend L e e e 472

16.18 1ibdhcp_limits.so: Limits to Manage Lease Allocation and Packet Processing 473
16.18.1 Configuration e e e e 474
16.18.2 Lease Limiting o e e e 475
16.18.3 Rate Limiting L e e e 476

16.19 libdhcp_mysql_cb.so: Configuration Backend for MySQL 477
16.20 libdhcp_pgsql_cb.so: Configuration Backend for PostgreSQL 477
16.21 1ibdhcp_radius.so: RADIUS Server Support 477
16.21.1 Installation from packages L 478
16.21.2 Compilation and Installation of the RADIUSHook 478
16.21.3 RADIUS Hook Configuration i i v ittt e it et e oo 482

16.22 libca_rbac.so: Role-Based Access Control 487
16.22.1 Role-Based Access Control (RBAC) Overview 487
16.22.2 Role-Based Access Control Configuration 487
16.22.2.1 Role Assignment i it e e e e e e 487

16.22.2.2 Role Configuration o o v i i it e e e e e e e 488

16.22.2.3 APICommands o i e e e e e e e e e e e 488

16.22.2.4 Access Control Lists o L e 489

16.22.2.5 Response Filters 489

16.22.2.6 Global Parameters 0 i e e e e e e 489

16.22.3 Sample Configuration L e e 490
16.22.4 Accept/Reject Algorithm e 492
16.22.5 Custom Hook Commands and Command Redefinition 492
16.22.6 Extensive Example Lo e 493

16.23 1ibdhcp_run_script.so: Run Script Support for External Hook Scripts 496
16.24 1ibdhcp_stat_cmds. so: Statistics Commands for Supplemental Lease Statistics 507
16.24.1 The stat-leased4-get, stat-lease6-get Commands 508

16.25 libdhcp_subnet_cmds.so: Subnet Commands to Manage Subnets and Shared Networks 510
16.25.1 The subnet4-list Command it 511
16.25.2 The subnet6-list Command i it ittt 512
16.25.3 The subnetd-get Command i i it it 512
16.25.4 The subnet6-get Command i 513
16.25.5 The subnet4-add Command it 514
16.25.6 The subnet6-add Command 515
16.25.7 The subnet4-update Command it 516
16.25.8 The subnet6-update Command 517
16.25.9 The subnet4-del Command e 517
16.25.10The subnet6-del Command i i i it i e 518
16.25.11The subnet4-delta-add Command 519
16.25.12The subnet6-delta-add Command 520
16.25.13The subnet4-delta-del Command 522
16.25.14The subnet6-delta-del Command 523
16.25.15The network4-1ist, network6-1list Commands 524
16.25.16The network4-get, network6-get Commands 525
16.25.17The network4-add, network6-add Commands 526
16.25.18The network4-del, network6-del Commands 527

16.25.19The network4-subnet-add, network6-subnet-add Commands 528

16.25.20The network4-subnet-del, network6-subnet-del Commands 529

16.26 1libdhcp_user_chk.so: UserCheck i i e i e e 529
17 Statistics 531
17.1 Statistics OVEIVIEW o o o o o e 531
17.2 Statistics Lifecycle 0 e e e e 532
17.3 Commands for Manipulating Statistics o 532
17.3.1 The statistic-getCommand it 532
17.3.2 The statistic-resetCommand. i 533
17.3.3 The statistic-remove Command v i i i it 533
17.3.4 The statistic-get-all Commandu.o.... 534
17.3.5 The statistic-reset-allCommand 546
17.3.6 The statistic-remove-all Command 546
17.3.7 The statistic-sample-age-set Command 547
17.3.8 The statistic-sample-age-set-all Command 547
17.3.9 The statistic-sample-count-set Command 547
17.3.10 The statistic-sample-count-set-all Command 548

174 Time Series o o v o o e e e e e e e e e e e e e e 548
18 Management API 549
I18.1 DataSyntaX v i i e e e e e e e e e e e e e 550
18.2 Control Agent Command Response Format 552
18.3 Usingthe Control Channel 553
18.4 Commands Supported by Both the DHCPv4 and DHCPv6 Servers 553
18.4.1 Thebuild-report Command i ittt 553
18.4.2 The config-get Command it 554
18.4.3 The config-hash-get Command 554
18.4.4 The config-reload Command e 554
18.4.5 The config-test Command 555
18.4.6 The config-writeCommand i i it 556
18.4.7 The leases-reclaimCommand 556
18.4.8 The libreload Command 0 v i it e e 556
18.4.9 The list-commands Command i i i i 557
18.4.10 The config-set Command it 557
18.4.11 The shutdown Command ittt it et 558
18.4.12 The dhcp-disable Command i it i 558
18.4.13 The dhcp-enable Command i ittt 559
18.4.14 The status-get Command i i i ittt et e 559
18.4.15 The server-tag-get Command: ittt 560
18.4.16 The config-backend-pull Command: 560
18.4.17 The version-get Command 560

18.5 Commands Supported by the D2 Server e 560
18.6 Commands Supported by the Control Agent 561
19 Logging 563
19.1 Logging Configuration o 0 i i e e e e e e e e e e e 563
19.1.1 LOZEEIS . . v v o o e e e e e e e e e e e e e e e e e e 563
19.1.1.1 The name (string) Logger 564

19.1.1.2 The severity (string) Logger 569

19.1.1.3 The debuglevel (integer) Logger 569

19.1.1.4 The output_options (list) Logger 569

19.1.1.4.1 The output (string) Option 569

19.1.1.4.2 The flush (boolean) Option 570

19.1.1.4.3 Themaxsize (integer) Option 570

Xi

19.1.1.4.4 The maxver (integer) Option 570

19.1.1.4.5 The pattern (string) Option 570

19.1.2 Logging Message Format i e e e 571
19.1.2.1 Example Logger Configurations 572

19.1.3 Logging During Kea Startup o 573

19.2 LoggingLevels o e e e e 574
20 The Kea Shell 575
20.1 Overviewofthe KeaShell 575
20.2 ShellUsage o o e e e 575
20.3 TLS SUPPOTt . . o v o o e e e e e e e e e e e e e e e e e 577
21 Integration With External Systems 579
21.1 YANG/NETCONEF e 579
2111 Overview o o e e e e e e 579
21.1.2 Installing NETCONF e e e e 579
21.1.2.1 Installing libyang From Sources 580

21.1.2.2 Installing sysrepo From Sources 580

21.1.2.3 Installing libyang-cpp From Sources 580

21.1.2.4 Installing sysrepo-cpp From Sources 580

21.1.3 Compiling With NETCONF e 581
21.1.4 Quick Sysrepo OVerview e 582
21.1.5 Supported YANG Models 585
21.1.6 Using the NETCONF Agent i ittt ettt s 585
21.1.7 Configuration i i e e e e e e e e e e e e e e e 585
21.1.8 A kea-netconf Configuration Example 587
21.1.9 Starting and Stopping the NETCONF Agent 589
21.1.10 A Step-by-Step NETCONF Agent Operation Example, 590
21.1.10.1 Setup of NETCONF Agent Operation Example 590

21.1.10.2 Example of Error Handling in NETCONF Operation. 592

21.1.10.3 NETCONF Operation Example with TwoPools 594

21.1.10.4 NETCONF Operation Example with Two Subnets 594

21.1.10.5 NETCONF Operation Example With Logging 595

21.1.10.6 Migrating YANG Data From a Prior Sysrepo Version 597

21.2 GSS-TSIG . . . o 597
21.2.1 GSS-TSIG OVErview v v vt e e e e e e e e e e e e e e e e 597
21.2.2 GSS-TSIG Compilation. o0 e e e e e e e e e 598
21.2.3 GSS-TSIG Deployment o o o it e e e e e e e e e e e 599
21.23.1 Kerberos5Setup 599

21.2.3.2 BIND 9 with GSS-TSIG Configuration 602

21.2.3.3 Windows Active Directory Configuration 603

21.2.3.4 GSS-TSIG Troubleshooting it 604

21.24 Using GSS-TSIG 604
21.2.4.1 GSS-TSIG Automatic Key Removal 611

21.2.4.2 GSS-TSIG Configuration for Deployment 611

21.2.5 GSS-TSIG Statistics o o vt 612
21.2.6 GSS-TSIG Commands it ittt e s e e 612
21.2.6.1 The gss-tsig-get-all Command 612

21.2.6.2 The gss-tsig-getCommand 613

21.2.6.3 The gss-tsig-listCommand 614

21.2.6.4 The gss-tsig-key-getCommand 615

21.2.6.5 The gss-tsig-key-expireCommand 615

21.2.6.6 The gss-tsig-key-del Command 616

21.2.6.7 The gss-tsig-purge-all Command 616

Xii

21.2.6.8 The gss-tsig-purgeCommand
21.2.6.9 The gss-tsig-rekey-allCommand
21.2.6.10 The gss-tsig-rekeyCommand

22 Monitoring Kea With Stork
22.1 Kea Statisticsin Grafana e e e e e

23

24

Kea Security
23.1 TLS/HTTPS

SUPPOTt . . o v o e e e e e e e e e e e e e

23.1.1 Building Kea with TLS/HTTPS Support i e
23.1.2 TLS/HTTPS Configuration ittt
23.1.3 OpenSSL Tuning o o i i i e e e e e e e e e e e
23.2 Securing a Kea Deployment L e
23.2.1 Component-Based Design e e e
23.2.2 Limiting Application Permissions L o
23.2.3 Securing Kea Administrative Access L o e
23.2.4 Securing Database Connections e e e e e e
23.2.5 Information Leakage Through Logging
23.2.6 Cryptography Components o v v vt v ittt e e e e e
23.2.7 TSIG Signatures . . . v v v v v e
23.2.8 Raw Socket Support e e e e e e
23.2.9 Remote Administrative ACCESS L. e
23.2.10 Authentication for Kea's RESTful API,
23.3 Kea Security Processes Lo e e e e e e
23.3.1 Vulnerability Handling e
23.3.2 Code Quality and Testing o o i i e e e e e e
2333 FuzzTesting o o i e e e e e e e e e e e
23.3.4 Release Integrity oL e e e e e e e e e

23.3.5 Bus

API Reference
24.1 build-report
24.2 cache-clear
24.3 cache-flush
24.4 cache-get .

Factor e e e

245 cache-get-by-id e

24.6 cache-insert
24.7 cache-load

24.8 cache-remove e e e e e e e e e e

24.9 cache-size .
24.10 cache-write
24.11 class-add .
24.12 class-del .
24.13 class-get .
24.14 class-list .
24.15 class-update

24.16 config-backend-pull e

24.17 config-get .

24.18 config-hash-get L
24.19 config-reload e e e e e e e e e e

24.20 config-set .
24.21 config-test
24.22 config-write
24.23 dhcp-disable

619
619

621
621
621
622
623
624
624
624
624
624
625
625
625
626
626
626
626
627
627
627
628
628

629
631
631
632
632
633
634
635
636
637
637
638
639
639
640
641
642
642
643
644
644
645
646
647

xiii

2424 dhep-enable L L L e e e e e e e e e e e e e e e 647

24.25 extended-infod-upgrade Lo e e e e e e e e 648
24260 @SS-ISIZ-ZEL .« v v i e e e e e e e e e e e e e e e e e e e 649
2427 gss-tsig-get-all L Lo e 650
24.28 gss-tsig-key-del 651
24.20 gss-tsig-key-expire e e e e 652
24.30 gss-tSig-Key-get o e e e e e e e e e e e e 652
2431 gss-tsig-list o e e e e e e e e e e 653
2432 @SS-ISIZ-PUIZE .« v v v v v o e 654
2433 gss-tsig-purge-allo e 655
2434 gss-tsig-rekey e e e 655
24.35 gss-tsig-rekey-all L L e e e e e e e e 656
2436 ha-continueo e e e e e e 657
24.37 ha-heartbeat L L e e e e e e e e e 657
24.38 ha-maintenance-cancel L. oL e e e e e e e e 658
24.39 ha-maintenance-notify o e 659
24.40 ha-maintenance-start e e e e e e e e e e e e e e e e e e 659
2441 ha-T€SEL . .+« v v i e e e e e e e e e e e e e e 660
2442 NA-SCOPLS « v v v v v e 661
2443 ha-SYNC . .« o e e e e e e e e e e e e e e 662
24.44 ha-sync-complete-notify e e 662
2445 leased-add e e 663
2446 leased-del Ll e e 664
2447 1eased-et i e e e e e e e e e e e e e e e e e 665
2448 leased-get-all e e e e e e 665
24.49 leased-get-by-client-ido e 667
24.50 leased-get-by-hostname e e e 668
24.51 leased-get-by-hw-address e e e e e e e e e e 669
24.52 18ase4-Get-PAZE . .« v v v e 670
24.53 leased-resend-ddns L L L L e e e e e e 671
2454 leased-update L e e 671
2455 Teased-Wipe L e e e 672
24.56 leased-Write e e e e e e e 673
24.57 lease6-add L L e e e 673
24.58 lease6-bulk-apply e e e e e e 674
24.59 lease6-delo e e e e e 676
24.60 leaseb-get e e 676
24.61 lease6-get-all e e e 677
24.62 lease6-get-by-duid e e e e e e e e 679
24.63 lease6-get-by-hostname o e e e e e e e e e e e e e e e 680
24.64 1€aSe0-ZEL-PAZE . .« .« vt e 681
24.65 lease6-resend-ddns L L L L e e e e e e e 682
24.66 leaseb-update e e e e 683
24.67 18aSEO-WIPE v i e 683
24.68 1easeh-Write e e e e e e e 684
24.69 leases-reclaim L L e e e e e e e 685
2470 libreload oL e e e e e e e e e 685
2471 list-commands Lo e e e e e e e e e e e 686
2472 networkd-add L L L e e e e e e e 687
2473 network4-del L e 688
2474 network4-get L L e e e e e e e e e e e e e 689
2475 network4-list oL L e e e e e e e e 690
24.76 network4-subnet-add e e e e e 691
2477 network4-subnet-del L 691

Xiv

2478 networkG-add L e e e e 692

2479 network6-del e e 693
24.80 networkO-get L L L e e e e e e e e e e e e 694
24.81 networkO-list e e e 695
24.82 network6-subnet-addo Lo e e e e e e 696
24.83 network6-subnet-del L 697
24.84 remote-classd-del e e 698
24.85 remote-classd-et e e e e e e e e e e e e e e 699
24.86 remote-classd-get-all e 700
24.87 remote-classd-Set L e e e e e e e e e e e 701
24.88 remote-classO-del L e 702
24.89 remote-classO-et e e e e e e e e e e e e e e e e e e 703
24.90 remote-classo-get-all L e e e e e e e e 704
2491 remote-class6-Set L e e e e e e e 705
24.92 remote-global-parameterd-delo oL 706
24.93 remote-global-parameterd-get L e e e e 707
24.94 remote-global-parameterd-get-all L 708
24.95 remote-global-parameterd-set e e e e e e e e e e e 709
24.96 remote-global-parameter6-del L. L e 710
24.97 remote-global-parameter6-get L L e e 711
24.98 remote-global-parameter6-get-all L 712
24.99 remote-global-parametero-set oLl e e e e e 713
24.100remote-network4-del oL L e 714
24.10Iremote-network4-get L L e e e e e e e e e e e 715
24 10Zremote-network4-list e 716
24.103remote-network4-set L L e e e e e e e e e 717
24.104remote-network6-del oL e 718
24.105remote-networkO-get L L e e e e e e e e e e e e e e e 719
24.10@emote-network6-list L. e 720
24.10remote-network6-set e e e e 721
24.10&emote-option-defd-del L e e 722
24.109emote-option-defd-get e e e 723
24.110remote-option-defd-get-all L 724
24. 11 Iremote-option-defd-set L e e e e e e e e e e e e 725
24.112remote-option-def6-del L L e e e 726
24.113%emote-option-defO-get L. e e e e e e e e e 727
24.114remote-option-defo-get-all e 728
24.115remote-option-defb-seto e e e 729
24.11aemote-optiond-global-del e e e e 730
24.117remote-optiond-global-get o e e e e e e e e e 731
24.118&emote-optiond-global-get-all o 732
24 11%emote-optiond-global-set Lo e 733
24.120remote-optiond-network-del oL 734
24.12Iremote-optiond-network-Set o e e e e e e e e e e e e e e e e 735
24.122remote-optiond-pool-del e e e e e e 736
24.123remote-option4-pool-set L L L L L e e e e 737
24.124remote-optiond-subnet-del oL 738
24.125emote-option4-subnet-set L. oL e e 739
24.12@emote-option6-global-del oL 740
24.127remote-option6-global-get e e e e e e e e e e e 741
24.12&emote-option6-global-get-all oL e e 742
24.12%emote-option6-global-seto e 743
24.13(0remote-option6-network-delo oL Lo 745
24.13Iremote-option6-network-set Lo e e e e 746

XV

24.132remote-option6-pd-pool-del e e e e e 747

24.133%remote-option6-pd-pool-Set L L. e e e e e e e e e e e 748
24.134remote-option6-pool-del e 749
24.135emote-option6-pool-set L L. L L 750
24.13Gemote-option6-subnet-del oL L oL 751
24.13remote-option0-subnet-set L. Lo e e e e e e e e e e 752
24.138&emote-serverd-del L e e e 753
24.13%emOte-SETVETA-ZEL . . . v v v v i e 754
24.140remote-serverd-get-all L e 755
24 14Tremote-SeTVerd-Sel L i i e 756
24 142Zremote-servero-del L e 757
24, 143Femote-SETVETO-ZCL . . . v v v v v i e 758
24. 144remote-servero-get-all L L L e e e e e e 759
24.145emote-Servert-Seto e e e e e e e e e e e e e 760
24 14@emote-subnetd-del-by-id 761
24 14remote-subnetd-del-by-prefix 762
24.148&emote-subnetd-get-by-id L L L 763
24.14%emote-subnetd-get-by-prefix L. L e e e e e e e e e e e 764
24.150remote-subnetd-list oL e e e 765
24 15Iremote-subnetd-set L. . e e e e e e e e 766
24.152remote-subnet6-del-by-id L oL oL 767
24.153remote-subneto-del-by-prefix 768
24.154remote-subneto-get-by-id L . L L e e e e e e e e e 769
24.155remote-subneto-get-by-prefix L L. L e e e e e e e e e 770
24.15@emote-subnet6-listo e 771
24 15Tremote-subneto-Set L L e 773
24 158eservation-add L L e e e 774
24 15%eservation-del e e 775
24.160reservation-get o it e 776
24.161Ireservation-get-all e e 777
24.162reservation-get-by-address L L. oL L e e e e e e 777
24.163reservation-get-by-hostname oL L oL 778
24 164reservation-get-by-id L L. L e e 779
24.165€servation-get-PAZC . . . v v i e 779
24.166Greservation-update L L e e e e e e e e e e e e e e e e 780
24 1678erver-tag-get e e e e e e e e e e e e e e e 781
24.16&hutdown L. e e e e e e e e 782
24.16%tat-1eased-get e e e 783
24, 170stat-1easet-Get e 784
24 17IStatiStic-GEL v o i e 785
24 17%tatistic-get-all e e 785
24 1736tatiStiC-TEMOVE . .+« v v v v v e it e 798
24 174statistic-remove-all oL e 799
24 1T756tatiStiC-TESEt o v e e e e e e e e e e e e e 800
24 176statistic-reset-all Lo e e 801
24 177ktatistic-sample-age-set e e e e e e e e e 801
24 17&tatistic-sample-age-set-all oL 802
24 17%tatistic-sample-count-setl 803
24.180statistic-sample-count-set-all e e e e e e e e e e 804
24 18IStAtUS-ZEL . .« v v i e 805
24.18%ubnetd-add L. e 806
24.183%ubnetd-del L e 807
24.184subnetd-delta-add L e e e e 808
24.185%ubnetd-delta-del L e 809

xvi

25

24.1868UDNCIA-GEL e e e e e e e e e e e e e e e e e e e 810

24.187subnetd-list L e e e 811
24.188&ubnetd-update e e e e e e e e e e e e e e e e 811
24.18%ubneto-add L L e e 812
24.190subneto-del L. e e 813
24.191subneto-delta-add L e 814
24.19%ubneto-delta-del e e e 815
24.1930UbNetO-ZEt L e e e e e e e e e e e e e e e e e e e 816
24.1945ubneth-1iSt oL e e e e e e e e e e e 817
24.195ubnetb-update L e e e e e e e e e e e e e e e e 818
24 106Version-get L. e e e e e e e e 819
Manual Pages 821
25.1 kea-dhcp4 - DHCPv4 serverinKea e 821
2511 Synopsis.o i e e e e 821
25.1.2 Description o i e e e e e e e e e e e e e e e e e e e 821
25.1.3 ATQUMENLS . . v o v e 821
25.1.4 Documentation e e e e e e e e e e e e e 822
25.1.5 Mailing Lists and Support e 822
25.1.6 HiStOry o o i e e e 822
2517 See AlSO . . . o o i e e e 822
25.2 kea-dhcp6 - DHCPv6serverinKea e 822
25.2.1 SynopSis e e e e e e e e e e e e 822
2522 Description e e e 823
2523 ATgUMENLS L e 823
25.2.4 Documentation L . e e e e e e e e e e e 823
25.2.5 Mailing Lists and Support L. e e e e e 824
25.2.6 HIiStOTY o e e e e e e e e 824
25277 See AlSO o e e e e e 824
25.3 kea-ctrl-agent - Control AgentprocessinKea, 824
2531 Synopsis. i i e e e 824
25.3.2 DesCription o i e e e e e e e e e e e e e e e e e 824
2533 ATZUMENLS . . . o v i e 824
25.3.4 Documentation e e e e e e e e e e e e e e 825
25.3.5 Mailing Lists and Support e 825
25.3.6 HIistory o o i e e e 825
2537 See AlSO o i i e e e 825
25.4 keactrl - Shell script for managing Kea 825
2541 SYnopSiso e e e e e e e e e e e e e 825
25.4.2 Description 826
2543 Configuration File 826
2544 OPHONS . . v v v o e e e e e e e e e e e e e e e e e 826
25.4.5 Documentation L. e e e e e e e e e e e e e 827
25.4.6 Mailing Lists and Support L. e e e e 827
25477 See AlSO L. e e 827
25.5 kea-admin - Shell script for managing Kea databases 827
25.5.1 Synopsis. oi i e e 827
25.5.2 DesCription o i e e e e e e e e e e e e e e e e e e e 827
25.5.3 ATZUMENLS . . . ot i e 828
25.54 Documentation e e e e e e e e e e e e e e e 829
25.5.5 Mailing Lists and Support e 829
2556 See AlsO oL e e e e e 829
25.6 kea-dhcp-ddns - DHCP-DDNS processinKea 830
25.6.1 SynopSiSo e e e e e e e e e e e e e e e e 830

25.6.2 DesCription o . e e e e e e e e e e e e e e e e e 830

25.6.3 ATZUMENLS . . . v vt it e 830
25.6.4 Documentation e e e e e e e e e e e e e 830
25.6.5 Mailing Lists and Support e 831
25.6.6 History e e e e e 831
25.6.7 See AlSO o i e e 831

25.7 kea-1lfc - Lease File Cleanup processinKea 831
25.7.1 SYnopSiSot e e e e e e e e e e e e e e e e e 831
25.7.2 Description o e e e e e e e 831
25773 Arguments e e 831
25.7.4 Documentation L. e e e e e e e e e e 832
25.7.5 Mailing Lists and Support L. e e e e e 833
25.7.6 HIiStOTY o e e e e e e e e e e e e e 833
257777 See AlSO L e e e 833

25.8 kea-shell - Text client for Control Agent process 833
25.8.1 Synopsis. e e e 833
25.8.2 DesCription o . e e e e e e e e e e e e e e e 833
25.8.3 ATZUMENLS . . . v vt it e 833
25.8.4 Documentation e e e e e e e e e e e e e e e 834
25.8.5 Mailing Lists and Support e 834
25.8.6 History 835
2587 See AlSO v i e e 835

25.9 kea-netconf - NETCONF agent for configuringKea 835
25.9.1 SynopsSiso o e e e e e e e e e e e e e e e 835
25.9.2 Description oL e e e e e e e e e e e e 835
2593 Arguments . . .o .. e e 835
25.9.4 Documentation L. e e e e e e e e e e e 836
25.9.5 Mailing Lists and Support L. e e e e e e e 836
25.9.6 HiStOTy o o e e e e e e e e e e 836
2597 See AlSO e e e 836

25.10 perfdhcp - DHCP benchmarking tool 836
25.10.1 Synopsis oo i e e e e 836
25.10.2 Description v o e 837
25.10.3 Templates o o e e e e e e e e e e e e e e e e e e e 837
25.10.4 OpONS .« v v v o e e e e e e e e e e e e e e e e e 838
25.10.5 DHCPv4-Only Options o ittt ettt e e e e e e e 841
25.10.6 DHCPv6-Only Optionst e e e 841
25.10.7 Template-Related Options i i 841
25.10.8 Options Controlling a Test i 0 i et e e e e e e 842
25.10.9 Arguments L e e e e e e e e e e e e e e e 842
25.10.10EIT01S .« « o oL e e e e e e e e 842
25.10.T1EXIt Status o o e e e e e e e e e 843
25.10.12Usage Examples oo L e e e e e e e e 843
25.10.13Documentation oL e e e e e e e e e e e e e 843
25.10.14Mailing Lists and Support e e e e e 844
25.10.15HIStOTY .« . o e e e e e e e e e e e e e e 844
25.10.16See ALSO v it e 844

26 Kea Messages Manual 845
26.1 ALLOC o e e e 845
26.2 ASIODNS . . . 856
263 BOOTP 859
264 COMMAND 860
260.5 CTRL 863

xviii

27

28

29

30

26.6 DATABASE 864

26.7 DCTL o e e e e e e e e 866
26.8 DHCP4 e e e e 869
26.9 DHCPO e e e e e 889
26.10 DHCPSRYV e 909
26.11 DHCP e e e 939
26.12 EVAL e e e e 950
26.13 FLEX e e e e e e 955
26.14 HA . . o e e e e e e 956
26.15 HOOKS e 969
26.16 HOSTS . . . o s 973
26.17 HTTPS . . . e e e 980
26.18 HTTP o o e e e e e e e e e e 980
26.19 LEASE e e e 984
2620 LEC s 987
26.21 LOGIMPL e 988
2022 LOG e s 988
26.23 MT . . . e e e e e e 990
26.24 MYSQL e e e e 991
26.25 NETCONF e e e e e e e e e e 1007
26.26 STAT o e 1010
2027 TCP o e s 1012
26.28 TS . . . o e e e e 1014
26.29 USER e e e e e e e 1014
Configuration Templates 1017
27.1 Template: Home Network of aPower User, 1017
27.1.1 Deployment Considerations o i i it e e e e 1018
27.1.2 Possible EXtensions e e e e e e e e e 1019
27.2 Template: Secure High Availability Kea DHCP with Multi-Threading 1031
27.2.1 Deployment Considerations o e 1032
27.2.2 Possible EXtensions e e e e e e e e e e e 1033
Kea Flow Diagrams 1047
28.1 MainLoop o e e e e e e e e e e e e e e 1047
28.2 DHCPv4 Packet Processing o i i e e e e e e e e e e 1047
28.3 DHCPREQUEST Processing v o v v i i e i e e e e e e e e e e e e e 1047
28.4 DHCPv4 Subnet Selection e e 1051
28.5 DHCPv4 Special Case of Double-Booting 1051
28.6 DHCPv4 Lease Allocation o o i i it e e e e 1051
28.7 Lease StateS o i e e e e e e e e e e e e e 1051
28.8 Checking for Host Reservations it e e 1051
28.9 Building the Options List e 1058
Kea Configuration File Syntax (BNF) 1063
29.1 BNF Grammar for DHCPv4 e 1063
29.2 BNF Grammar for DHCPv6 e 1083
29.3 BNF Grammar for Control Agent e 1104
29.4 BNF Grammar for DHCP-DDNS e 1109
29.5 BNF Grammar for the Kea NETCONF Agent o 0 i ittt e 1115
Acknowledgments 1121

xix

XX

Kea Administrator Reference Manual Documentation, Release 2.4.0

Kea is an open source implementation of the Dynamic Host Configuration Protocol (DHCP) servers, developed and
maintained by Internet Systems Consortium (ISC).

This is the reference guide for Kea version 2.4.0. Links to the most up-to-date version of this document (in PDF,
HTML, and plain text formats) can be found on Read the Docs. Other useful Kea information can be found in our
Knowledgebase.

CONTENTS 1

https://kea.readthedocs.io
https://kb.isc.org

Kea Administrator Reference Manual Documentation, Release 2.4.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

Kea is the next generation of DHCP software, developed by Internet Systems Consortium (ISC). It supports both the
DHCPv4 and DHCPv6 protocols along with their extensions, e.g. prefix delegation and dynamic updates to DNS.

This guide covers Kea version 2.4.0.

For information about supported platforms see Supported Platforms.

1.1 Supported Platforms

In general, this version of Kea builds and runs on any POSIX-compliant system with a C++ compiler (with C++11
support), the Botan cryptographic library, the logdcplus logging library and the Boost system library.

The Kea build has been checked with GCC g++ 4.8.5 and some later versions, and Clang 800.0.38 and some later
versions.

ISC regularly tests Kea on many operating systems and architectures, but lacks the resources to test all of them. Con-
sequently, ISC is only able to offer support on a "best-effort" basis for some.

1.1.1 Regularly Tested Platforms
Kea is officially supported on Alpine, CentOS, Fedora, RHEL, Ubuntu, Debian, and FreeBSD systems. Kea- 2.4.0
builds have been tested on:

e Alpine — 3.15, 3.16, 3.17

e CentOS —7

¢ Debian — 10, 11, 12

* Fedora — 36, 37, 38

* FreeBSD — 12, 13

« RHEL — 8,9

» Ubuntu — 18.04, 20.04, 22.04

There are currently no plans to port Kea to Windows systems.

Kea Administrator Reference Manual Documentation, Release 2.4.0

1.1.2 Best-Effort

The following are platforms on which Kea is known to build and run. ISC makes every effort to fix bugs on these
platforms, but may be unable to do so quickly due to lack of hardware, less familiarity on the part of engineering staff,
and other constraints.

e macOS — 11, 12,13

1.1.3 Community-Maintained

These systems have once been regularly tested, but official support for it has been abandoned, usually due to discontin-
ued support on their own part. Older versions may not have the required dependencies for building Kea easily available,
although it is possible in many cases to compile on those directly from source. The community and interested parties
may wish to help with maintenance, and we welcome patch contributions, although we cannot guarantee that we will
accept them. All contributions are assessed against the risk of adverse effect on officially supported platforms.

These include platforms past their respective EOL dates, such as:
* Alpine — 3.10, 3.11, 3.12, 3.13, 3.14 (EOL 01 May 2023)
¢ CentOS — 6, 8 (EOL 31 December 2021)
¢ Debian — 8, 9 (EOL 30 June 2022)
e Fedora — 31, 32, 33, 34, 35 (EOL 13 December 2022)
e FreeBSD — 10, 11 (EOL 30 September 2021)
* macOS — 10.13, 10.14, 10.15 (EOL 12 September 2022)
* Ubuntu — 14.04, 18.10, 19.04, 19.10, 21.04 (EOL 20 January 2022)

1.1.4 Unsupported Platforms

These are platforms on which versions of Kea since 1.7 are known not to build or run:
¢ Windows (all versions)
¢ Windows Server (all versions)
¢ Any platform with OpenSSL 1.0.1 or earlier, which does not also have Botan as an alternative

* Any platform with log4cplus version 1.0.2 or earlier.

1.2 Required Software at Runtime

Kea uses various extra software packages which may not be provided in the default installation of some operating
systems, nor in the standard package collections. This required software may need to be installed separately. (For the
build requirements, also see Build Requirements.)

* Kea supports two cryptographic libraries: Botan and OpenSSL. Only one of them is required to be installed
during compilation. Kea uses the Botan library for C++ (https://botan.randombit.net/), version 2.0 or later;
support for Botan versions earlier than 2.0 was removed as of Kea 1.7.0. As an alternative to Botan, Kea can use
the OpenSSL cryptographic library (https://www.openssl.org/), version 1.0.2 or later.

* Kea uses the logdcplus C++ logging library (https://sourceforge.net/p/logdcplus/wiki/Home/). It requires
log4cplus version 1.0.3 or later.

4 Chapter 1. Introduction

https://botan.randombit.net/
https://www.openssl.org/
https://sourceforge.net/p/log4cplus/wiki/Home/

Kea Administrator Reference Manual Documentation, Release 2.4.0

Kea requires the Boost system library (https://www.boost.org/). Building with the header-only version of Boost
is no longer recommended.

Some optional features of Kea have additional dependencies.

1.3

To store lease information in a MySQL database, Kea requires MySQL headers and libraries. This is an optional
dependency; Kea can be built without MySQL support.

To store lease information in a PostgreSQL database, Kea requires PostgreSQL headers and libraries. This is an
optional dependency; Kea can be built without PostgreSQL support.

Integration with RADIUS is provided in Kea via the hook library available to ISC's paid support customers. Use
of this library requires the FreeRADIUS-client library to be present on the system where Kea is running. This is
an optional dependency; Kea can be built without RADIUS support.

Kea provides a NETCONF interface with the kea-netconf agent. This Kea module requires Sysrepo soft-
ware when used. Building Kea with NETCONF support requires many dependencies to be installed, which are
described in more detail in Installing NETCONF . This is an optional dependency; Kea can be built without
NETCONF support.

To sign and verify DNS updates the Kea DDNS server may use GSS-TSIG, which requires MIT Kerberos 5 or
Heimdal libraries. The dependencies required to be installed are described in more detail in GSS-TSIG Compi-
lation. This is an optional dependency; Kea can be built without GSS-TSIG support.

Kea Software

Kea is a modular DHCP server solution. This modularity is accomplished using multiple cooperating processes which,
together, provide the server functionality. The following software is included with Kea:

keactrl — This tool starts, stops, reconfigures, and reports the status of the Kea servers.
kea-dhcp4 — The DHCPv4 server process. This process responds to DHCPv4 queries from clients.
kea-dhcp6 — The DHCPv6 server process. This process responds to DHCPv6 queries from clients.

kea-dhcp-ddns — The DHCP Dynamic DNS process. This process acts as an intermediary between the DHCP
servers and external DNS servers. It receives name update requests from the DHCP servers and sends DNS update
messages to the DNS servers.

kea-admin — This is a useful tool for database backend maintenance (creating a new database, checking ver-
sions, upgrading, etc.).

kea-1fc — This process removes redundant information from the files used to provide persistent storage for the
memfile database backend. While it can be run standalone, it is normally run as and when required by the Kea
DHCP servers.

kea-ctrl-agent — The Kea Control Agent (CA) is a daemon that exposes a RESTful control interface for
managing Kea servers.

kea-netconf - kea-netconf is an agent that provides a YANG/NETCONF interface for configuring Kea.
kea-shell — This simple text client uses the REST interface to connect to the Kea Control Agent.

perfdhcp — This is a DHCP benchmarking tool which simulates multiple clients to test both DHCPv4 and
DHCPV6 server performance.

The tools and modules are covered in full detail in this guide. In addition, manual pages are also provided in the default
installation.

Kea also provides C++ libraries and programmer interfaces for DHCP. These include detailed developer documentation
and code examples.

1.3. Kea Software 5

https://www.boost.org/

Kea Administrator Reference Manual Documentation, Release 2.4.0

6 Chapter 1. Introduction

CHAPTER
TWO

QUICK START

This section describes the basic steps needed to get Kea up and running. For further details, full customizations, and
troubleshooting, see the respective chapters elsewhere in this Kea Administrator Reference Manual (ARM).

2.1 Quick Start Guide Using tarball

1. Install required runtime and build dependencies. See Build Requirements for details.
2. Download the Kea source tarball from the ISC.org downloads page or the ISC downloads site.
3. Extract the tarball. For example:
$ tar -xvzf kea- 2.4.0.tar.gz
4. Go into the source directory and run the configure script:

$ cd kea- 2.4.0
$./configure [your extra parameters]

5. Build it:

{$ make

6. Install it (by default it will be placed in /usr/local/, so root privileges are likely required for this step):

{5 make install

2.2 Quick Start Guide Using Native Packages

ISC provides native Alpine, deb, and RPM packages, which make Kea installation much easier. Unless specific com-
pilation options are desired, it is usually easier to install Kea using native packages.

1. Go to Kea on cloudsmith.io, choose the Kea version, and enter the repository.

2. Use Set Me Up and follow instructions to add the repository to the local system.

Note: For example, the Debian setup instructions for Kea 2.3 can be found here: https://cloudsmith.io/~isc/repos/
kea-2-3/setup/#formats-deb

The dropdown near the top of the page offers instructions for other operating systems.

3. Update system repositories. For example, on Debian/Ubuntu:

https://www.isc.org/download/
https://downloads.isc.org/isc/kea/
https://cloudsmith.io/~isc/repos/
https://cloudsmith.io/~isc/repos/kea-2-3/setup/#formats-deb
https://cloudsmith.io/~isc/repos/kea-2-3/setup/#formats-deb

Kea Administrator Reference Manual Documentation, Release 2.4.0

[$ sudo apt update }
On CentOS/Fedora:

[$ sudo yum update]
On Alpine:

[# apk update]

4. Keais splitinto various packages. The entire list is available on cloudsmith.io or using apt/yum/dnf. For example,

on Debian/Ubuntu:

[$ apt search isc-kea J
On CentOS/Fedora:

[$ yum search isc-kea]
On Alpine:

[$ apk search isc-kea]

5. Install the metapackage containing all of the tools, services, and open source hooks:

[$ sudo apt install isc-kea]

or specific packages:

[$ sudo apt install isc-kea-dhcp6 J
or every single Kea-related package, including development headers, debug symbols, and premium hooks (if
available):

[$ sudo apt install isc-kea* J

or all packages with a specified version number:

[s sudo apt install isc-kea*=2.4.0-isc20230531000000 J

Note: Not all package managers support installing packages with a glob (*), please refer to the specific package
manager's manual before attempting this.

* On CentOS/Fedora systems, replace apt install with yum install.

* On Alpine systems, replace apt install with apk add.

6. All installed packages should be now available directly; for example:

[# kea-dhcp6 -c /path/to/your/kea6/config/file. json]

or using systemd:

[# systemctl restart kea-dhcp6]

8 Chapter 2. Quick Start

https://cloudsmith.io/~isc/repos/

Kea Administrator Reference Manual Documentation, Release 2.4.0

or using OpenRC on Alpine:

[# service kea-dhcp6 restart]

Note: keactrl is not available in packages, as similar functionality is provided by the native systemctl scripts.

7. On CentOS, Fedora, and Alpine, the service must be enabled at boot time if desired; this is done automatically
at package installation time on Debian and Ubuntu systems. For example, with systemd on CentOS/Fedora:

[# systemctl enable kea-dhcp6]
With OpenRC on Alpine:
[# rc-update add kea-dhcp6 J

2.3 Quick Start Guide for DHCPv4 and DHCPv6 Services

1. Edit the Kea configuration files, which by default are installed in the [kea-install-dir]/etc/kea/ direc-
tory. These are: kea-dhcp4.conf, kea-dhcp6.conf, kea-dhcp-ddns.conf and kea-ctrl-agent.conf,
keactrl.conf for DHCPv4 server, DHCPv6 server, D2, Control Agent, and the keactrl script, respectively.

2. To start the DHCPv4 server in the background, run the following command (as root):

[# keactrl start -s dhcp4 J

Or run the following command to start the DHCPv6 server:

[# keactrl start -s dhcp6]

Note that it is also possible to start all servers simultaneously:

[# keactrl start]

3. Verify that the Kea server(s) is/are running:

[# keactrl status]

A server status of "inactive" may indicate a configuration error. Please check the log file (by default named
[kea-install-dir]/var/log/kea-dhcp4.1log, [kea-install-dir]/var/log/kea-dhcp6.1log,
[kea-install-dir]/var/log/kea-ddns.log, or [kea-install-dir]/var/log/kea-ctrl-agent.
log) for the details of any errors.

4. If the server has started successfully, test that it is responding to DHCP queries and that the client receives a
configuration from the server; for example, use the ISC DHCP client.

5. To stop running the server(s):

[# keactrl stop]

For system-specific instructions, please read the system-specific notes, available in the Kea section of ISC's Knowl-
edgebase.

The details of keactrl script usage can be found in Managing Kea with keactrl.

2.3. Quick Start Guide for DHCPv4 and DHCPv6 Services 9

https://www.isc.org/download/
https://kb.isc.org/docs/installing-kea
https://kb.isc.org/docs
https://kb.isc.org/docs

Kea Administrator Reference Manual Documentation, Release 2.4.0

Once Kea services are up and running, consider deploying a dashboard solution to monitor running services. For more
details, see Monitoring Kea With Stork.

2.4 Running the Kea Servers Directly

The Kea servers can be started directly, without the need to use keactrl or systemctl. To start the DHCPv4 server
run the following command:

[# kea-dhcp4 -c /path/to/your/kead4/config/file.json J

Similarly, to start the DHCPv6 server, run the following command:

[# kea-dhcp6 -c /path/to/your/kea6/config/file.json]

10 Chapter 2. Quick Start

CHAPTER
THREE

INSTALLATION

3.1 Packages

ISC publishes native RPM, deb, and APK packages, along with the tarballs with the source code. The packages are
available on Cloudsmith at https://cloudsmith.io/~isc/repos. The native packages can be downloaded and installed
using the system available in a specific distribution (such as dpkg or rpm). The Kea repository can also be added to
the system, making it easier to install updates. For details, please go to https://cloudsmith.io/~isc/repos, choose the
repository of interest, and then click the Set Me Up button. For detailed instructions or refer to ISC KB article.

3.1.1 Installation From Cloudsmith Packages

ISC provides Kea packages for Alpine, CentOS, Debian, Fedora, RHEL, and Ubuntu. The recommended method for
installing Kea on any of these systems, from the Cloudsmith repository for Kea release 2.3.1 or later, is to install the
isc-kea metapackage. This metapackage is included on all supported distros and installs all of the services offered
by the Kea software suite.

Specific Kea components can be installed individually, with any of the following packages:
* isc-kea-dhcp4 — Kea DHCPv4 server package
* isc-kea-dhcp6 — Kea DHCPv6 server package
¢ isc-kea-dhcp-ddns — Kea DHCP DDNS server
e isc-kea-ctrl-agent — Kea Control Agent for remote configuration
* isc-kea-admin — Kea database administration tools
* isc-kea-hooks — Kea open source DHCP hooks

Kea Premium hook packages are not included in the isc-kea-hooks package. For ISC customers with access to the
premium hooks, those packages have the isc-kea-premium- prefix.

Once installed, the services can be managed through the distribution's service manager. The services are named:
kea-dhcp4, kea-dhcp6, kea-dhcp-ddns, and kea-ctrl-agent.

Note: The real service names on Debian and Ubuntu follow the names of the older packages, to maintain compat-
ibility with pre-existing scripts. A systemd service alias is used to allow users to refer to them with shorter names.
Calling systemctl enable on these services requires the real service names, which are: isc-kea-dhcp4-server,
isc-kea-dhcp6-server, isc-kea-dhcp-ddns-server, and isc-kea-ctrl-agent.

11

https://cloudsmith.io/~isc/repos/
https://cloudsmith.io/~isc/repos
https://cloudsmith.io/~isc/repos
https://kb.isc.org/docs/isc-kea-packages

Kea Administrator Reference Manual Documentation, Release 2.4.0

3.1.2 Caveats When Upgrading Kea Packages

To upgrade to Kea 2.3.2 or later from an earlier version of Kea on Debian and Ubuntu systems, run apt dist-upgrade
instead of the usual apt upgrade. Once this upgrade has been completed, it is possible to upgrade to later versions
normally using apt upgrade on Debian and Ubuntu systems.

Users may notice differences in the packages distributed in Kea versions prior to 2.3.2 and those distributed with 2.3.2
and later. As a result of an overhaul of our package design with that release, some packages were renamed or removed.
To ensure that upgrades go as smoothly as possible, pay attention to which packages are being removed and installed
by the upgrade transaction, and ensure that all required packages are reinstalled.

Specifically, there is a possibility for the following packages to be removed during the upgrade, depending on which
packages were originally installed:

e isc-kea-dhcp4
¢ isc-kea-dhcp6
¢ isc-kea-dhcp-ddns
e isc-kea-hooks

To install the entire Kea software suite, simply run apt install isc-kea after upgrading, which will install all of
the relevant subpackages that make up Kea.

This upgrade path issue does not apply to RPM and Alpine systems; however, customers with ISC support contracts
who experience difficulties with upgrading past 2.3.1 are invited to open a ticket in their support queue. Other users
are encouraged to describe their situation on the kea-users mailing list for best-effort support from other list members.

3.2 Installation Hierarchy

The following is the directory layout of the complete Kea installation. (All directory paths are relative to the installation
directory.)

* etc/kea/ — configuration files.

e include/ — C++ development header files.

e 1ib/ — libraries.

¢ 1lib/kea/hooks — additional hook libraries.

* sbin/ — server software and commands used by the system administrator.
* share/doc/kea/ — this guide, other supplementary documentation, and examples.
* share/kea/ — API command examples and database schema scripts.

* share/man/ — manual pages (online documentation).

» var/lib/kea/ — server identification and lease database files.

* var/log/ - log files.

* var/run/kea - PID file and logger lock file.

12 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 2.4.0

3.3

Build Requirements

In addition to the runtime requirements (listed in Required Software at Runtime), building Kea from source code requires
various development include headers and program development tools.

Note:

Some operating systems have split their distribution packages into a runtime and a development package. The

development package versions, which include header files and libraries, must be installed to build Kea from the source

code.

Building from source code requires the following software installed on the system:

Boost C++ libraries (https://www.boost.org/). The oldest Boost version used for testing is 1.57 (although Kea
may also work with older versions). The Boost system library must also be installed. Installing a header-only
version of Boost is not recommended.

OpenSSL (at least version 1.0.2) or Botan (at least version 2). OpenSSL version 1.1.1 or later is strongly recom-
mended.

log4cplus (at least version 1.0.3) development include headers.

A C++ compiler (with C++11 support) and standard development headers. The Kea build has been checked with
GCC g++ 4.8.5 and some later versions, and Clang 800.0.38 and some later versions.

The development tools automake, libtool, and pkg-config.

The MySQL client and the client development libraries, when using the --with-mysql configuration flag to
build the Kea MySQL database backend. In this case, an instance of the MySQL server running locally or on a
machine reachable over a network is required. Note that running the unit tests requires a local MySQL server.

The PostgreSQL client and the client development libraries, when using the --with-pgsql configuration flag to
build the Kea PostgreSQL database backend. In this case an instance of the PostgreSQL server running locally or
on a machine reachable over a network is required. Note that running the unit tests requires a local PostgreSQL
server.

The FreeRADIUS client library is required to connect to a RADIUS server. This is specified using the
--with-freeradius configuration switch.

Sysrepo v1.4.140 and libyang v1.0.240 are needed to connect to a Sysrepo datastore. Earlier versions are no
longer supported. When compiling from sources, the configure switches that can be used are --with-1libyang
and --with-sysrepo without any parameters. If these dependencies were installed in custom paths, point the
switches to them.

The MIT Kerberos 5 or Heimdal libraries are needed by Kea DDNS server to sign and verify DNS updates
using GSS-TSIG. The configuration switch which enables this functionality is --with-gssapi without any
parameters. If these dependencies were installed in custom paths, point the switch to them.

googletest (version 1.8 or later) is required when using the --with-gtest configuration option to build the unit
tests.

The documentation generation tools Sphinx, texlive with its extensions, and Doxygen, if using the
--enable-generate-docs configuration option to create the documentation. Specifically, with Fedora,
python3-sphinx, texlive, and texlive-collection-latexextra are necessary; with Ubuntu, python3-sphinx, python3-
sphinx-rtd-theme, and texlive-binaries are needed. If LaTeX packages are missing, Kea skips PDF generation
and produces only HTML documents.

Visit ISC's Knowledgebase at https://kb.isc.org/docs/installing-kea for system-specific installation tips.

3.3.

Build Requirements 13

https://www.boost.org/
https://www.sphinx-doc.org/
https://kb.isc.org/docs/installing-kea

Kea Administrator Reference Manual Documentation, Release 2.4.0

3.4 Installation From Source

Although Kea may be available in pre-compiled, ready-to-use packages from operating system vendors, it is open
source software written in C++. As such, it is freely available in source code form from ISC as a downloadable tar file.
The source code can also be obtained from the Kea GitLab repository at https://gitlab.isc.org/isc-projects/kea. This
section describes how to build Kea from the source code.

3.4.1 Download Tar File

The Kea release tarballs may be downloaded from: https://downloads.isc.org/isc/kea/.

3.4.2 Retrieve From Git

The latest development code is available on GitLab (see https://gitlab.isc.org/isc-projects/kea). The Kea source is
public and development is done in the “master” branch.

Downloading this "bleeding edge" code is recommended only for developers or advanced users. Using development
code in a production environment is not recommended.

Note: When building from source code retrieved via git, additional software is required: automake (v1.11 or later),
libtoolize, and autoconf (v2.69 or later). These may need to be installed.

The code can be checked out from https://gitlab.isc.org/isc-projects/kea.git:

[$ git clone https://gitlab.isc.org/isc-projects/kea.git

]

The code checked out from the git repository does not include the generated configure script or the Makefile.in files,
nor their related build files. They can be created by running autoreconf with the --install switch. This will run
autoconf, aclocal, 1libtoolize, autoheader, automake, and related commands.

Write access to the Kea repository is only granted to ISC staff. Developers planning to contribute to Kea should check
our Contributor's Guide. The Kea Developer's Guide contains more information about the process, and describes the
requirements for contributed code to be accepted by ISC.

3.4.3 Configure Before the Build

Kea uses the GNU Build System to discover build environment details. To generate the makefiles using the defaults,
simply run:

[$./configure

Run . /configure with the --help switch to view the different options. Some commonly used options are:

--prefix Define the installation location (the default is /usr/local).

--with-mysql Build Kea with code to allow it to store leases and host reservations in a MySQL database.
--with-pgsql Build Kea with code to allow it to store leases and host reservations in a PostgreSQL database.
--with-log4cplus Define the path to find the Log4cplus headers and libraries. Normally this is not necessary.

--with-boost-include Define the path to find the Boost headers. Normally this is not necessary.

14

Chapter 3. Installation

https://gitlab.isc.org/isc-projects/kea
https://downloads.isc.org/isc/kea/
https://gitlab.isc.org/isc-projects/kea
https://gitlab.isc.org/isc-projects/kea/blob/master/contributors-guide.md
https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.4.0

--with-botan-config Specify the path to the botan-config script to build with Botan for cryptographic func-
tions. It is preferable to use OpenSSL (see below).

--with-openssl Use the OpenSSL cryptographic library instead of Botan. By default configure searches
for a valid Botan installation; if one is not found, Kea searches for OpenSSL. Normally this is not necessary.

--enable-shell Build the optional kea-shell tool (more in 7he Kea Shell). The default is to not build it.

--with-site-packages Only useful when kea-shell is enabled, this switch causes the kea-shell Python
packages to be installed in the specified directory. This is mostly useful for Debian-related distributions. While
most systems store Python packages in ${prefix}/usr/lib/pythonX/site-packages, Debian introduced
a separate directory for packages installed from DEB. Such Python packages are expected to be installed in
/usr/lib/python3/dist-packages.

--enable-perfdhcp Build the optional perfdhcp DHCP benchmarking tool. The default is to not build it.

--with-freeradius Build the optional RADIUS hook. This option specifies the path to the patched version
of the FreeRADIUS client. This feature is available in the subscriber-only version of Kea, and requires the
subscription-only RADIUS hook.

--with-freeradius-dictionary Specify a non-standard location for a FreeRADIUS dictionary file, which
contains a list of supported RADIUS attributes. This feature is available in the subscriber-only version of Kea,
and requires the subscription-only RADIUS hook.

If the RADIUS options are not available, ensure that the RADIUS hook sources are in the premium directory and rerun
autoreconf -i.

Note: For instructions concerning the installation and configuration of database backends for Kea, see DHCP Database
Installation and Configuration.

There are many options that are typically not necessary for regular users. However, they may be useful for package
maintainers, developers, or people who want to extend Kea code or send patches:

e —-with-gtest, --with-gtest-source Enable the building of C++ unit tests using the Google Test frame-

work. This option specifies the path to the gtest source. (If the framework is not installed on the system, it can
be downloaded from https://github.com/google/googletest.)

--enable-generate-docs Enable the rebuilding of Kea documentation. ISC publishes Kea documentation
for each release; however, in some cases it may be desirable to rebuild it: for example, to change something in
the docs, or to generate new ones from git sources that are not yet released.

--enable-generate-parser Enable the generation of parsers using flex or bison. Kea sources include .cc and
.h parser files, pre-generated for users' convenience. By default Kea does not use flex or bison, to avoid requiring
installation of unnecessary dependencies for users. However, if anything in the parsers is changed (such as adding
a new parameter), flex and bison are required to regenerate parsers. This option permits that.

--enable-generate-messages Enable the regeneration of messages files from their messages source files, e.g.
regenerate xxx_messages.h and xxx_messages.cc from xxx_messages.mes using the Kea message compiler. By
default Kea is built using these .h and .cc files from the distribution. However, if anything in a .mes file is changed
(such as adding a new message), the Kea message compiler needs to be built and used. This option permits that.

As an example, the following command configures Kea to find the Boost headers in /ust/pkg/include, specifies that
PostgreSQL support should be enabled, and sets the installation location to /opt/kea:

$./configure \

--with-boost-include=/usr/pkg/include \
--with-pgsql=/usr/local/bin/pg_config \
--prefix=/opt/kea

3.4.

Installation From Source 15

https://github.com/google/googletest

Kea Administrator Reference Manual Documentation, Release 2.4.0

Users who have any problems with building Kea using the header-only Boost code, or who would like to use the Boost
system library (assumed for the sake of this example to be located in /ust/pkg/lib), should issue these commands:

$./configure \
--with-boost-libs=-1boost_system \
--with-boost-1lib-dir=/usr/pkg/lib

If configure fails, it may be due to missing or old dependencies.

When configure succeeds, it displays a report with the parameters used to build the code. This report is saved into
the file config.report and is also embedded into the executable binaries, e.g., kea-dhcp4.

3.4.4 Build

After the configure step is complete, build the executables from the C++ code and prepare the Python scripts by running
the command:

(5 make J

3.4.5 Install

To install the Kea executables, support files, and documentation, issue the command:

[$ make install]

Do not use any form of parallel or job server options (such as GNU make's - j option) when performing this step; doing
SO may cause errors.

Note: The install step may require superuser privileges.

If required, run 1dconfig as root with /usr/local/1lib (or with prefix/lib if configured with --prefix) in /etc/
1d. so.conf (or the relevant linker cache configuration file for the OS):

[$ ldconfig J

Note: If 1dconfig is not run where required, users may see errors like the following:

cannot open shared object file: No such file or directory

program: error while loading shared libraries: libkea-something.so.1: ’

16 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 2.4.0

3.4.6 Cross-Building

It is possible to cross-build Kea, i.e. to create binaries in a separate system (the build system) from the one where Kea
runs (the host system).

It is outside of the scope of common administrator operations and requires some developer skills, but the Developer
Guide explains how to do that using an x86_64 Linux system to build Kea for a Raspberry Pi box running Raspbian:
Kea Cross-Compiling Example.

3.5 DHCP Database Installation and Configuration

Kea stores its leases in a lease database. The software has been written in a way that makes it possible to choose
which database product should be used to store the lease information. Kea supports three database backends: MySQL,
PostgreSQL and memfile. To limit external dependencies, MySQL and PostgreSQL support are disabled by default
and only memfile is available. Support for the optional external database backend must be explicitly included when
Kea is built. This section covers the building of Kea with one of the optional backends and the creation of the lease
database.

Note: When unit tests are built with Kea (i.e. the --with-gtest configuration option is specified), the databases
must be manually pre-configured for the unit tests to run. The details of this configuration can be found in the Kea
Developer's Guide.

3.5.1 Building with MySQL Support

Install MySQL according to the instructions for the system. The client development libraries must be installed.

Build and install Kea as described in Installation, with the following modification. To enable the MySQL database
code, at the "configure" step (see Configure Before the Build), the --with-mysql switch should be specified:

[$./configure [other-options] --with-mysql }

If MySQL was not installed in the default location, the location of the MySQL configuration program "mysql_config"
should be included with the switch:

[$./configure [other-options] --with-mysgl=path-to-mysql_config]

See First-Time Creation of the MySQL Database for details regarding MySQL database configuration.

3.5.2 Building with PostgreSQL support
Install PostgreSQL according to the instructions for the system. The client development libraries must be installed.
Client development libraries are often packaged as "libpq".

Build and install Kea as described in /nstallation, with the following modification. To enable the PostgreSQL database
code, at the "configure" step (see Configure Before the Build), the --with-pgsql switch should be specified:

[$./configure [other-options] --with-pgsql }

If PostgreSQL was not installed in the default location, the location of the PostgreSQL configuration program
"pg_config" should be included with the switch:

3.5. DHCP Database Installation and Configuration 17

https://reports.kea.isc.org/dev_guide/de/d9a/crossCompile.html
https://reports.kea.isc.org/dev_guide/
https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.4.0

[$./configure [other-options] --with-pgsql=path-to-pg_config J

See First-Time Creation of the PostgreSQL Database for details regarding PostgreSQL database configuration.

3.6 Hammer Building Tool

Hammer is a Python 3 script that lets users automate tasks related to building Kea, such as setting up virtual machines,
installing Kea dependencies, compiling Kea with various options, running unit-tests and more. This tool was created
primarily for internal QA purposes at ISC and it is not included in the Kea distribution; however, it is available in
the Kea git repository. This tool was developed primarily for internal purposes and ISC cannot guarantee its proper
operation. Administrators who decide to use it should do so with care.

Note: Use of this tool is completely optional. Everything it does can be done manually.

The first-time user is strongly encouraged to look at Hammer's built-in help:

[$./hammer.py --help

It will list available parameters.

Hammer is able to set up various operating systems running either in LXC or in VirtualBox. For a list of supported
systems, use the supported-systems command:

$./hammer.py supported-systems
fedora:

- 27: 1xc, virtualbox

- 28: 1xc, virtualbox

- 29: 1xc, virtualbox

centos:

- 7: 1xc, virtualbox
rhel:

- 8: virtualbox
ubuntu:

- 16.04: 1xc, virtualbox

- 18.04: 1lxc, virtualbox

- 18.10: 1xc, virtualbox
debian:

- 8: 1lxc, virtualbox

- 9: 1xc, virtualbox
freebsd:

- 11.2: virtualbox

- 12.0: virtualbox

It is also possible to run the build locally, in the current system (if the OS is supported).

First, the Hammer dependencies must be installed: Vagrant and either VirtualBox or LXC. Hammer can install Vagrant
and the required Vagrant plugins using the command:

[$./hammer.py ensure-hammer-deps

VirtualBox and LXC must be installed manually.

18 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 2.4.0

The basic functions provided by Hammer are to prepare the build environment and perform the actual build, and to run
the unit tests locally in the current system. This can be achieved by running the command:

[$./hammer.py build -p local J

The scope of the process can be defined using the --with (-w) and --without (-x) options. By default, the build
command builds Kea with documentation, installs it locally, and runs unit tests.

To exclude the installation and generation of docs, type:

[$./hammer.py build -p local -x install docs]

The basic scope can be extended by mysql, pgsql, native-pkg, radius, shell, and forge.

Note: If building Kea locally, Hammer dependencies like Vagrant are not needed.

Hammer can be told to set up a new virtual machine with a specified operating system, without the build:

[$./hammer.py prepare-system -p virtualbox -s freebsd -r 12.0]

This way, a system can be prepared for our own use. To get to such a system using SSH, invoke:

[$./hammer.py ssh -p virtualbox -s freebsd -r 12.0]

It is possible to speed up subsequent Hammer builds via ccache. During compilation, ccache stores objects in a shared
folder. In subsequent runs, instead of doing an actual compilation, ccache returns the stored earlier objects. The cache
with these objects for reuse must be stored outside of VM or LXC. To indicate the folder, the --ccache-dir parameter
for Hammer must be included. In the indicated folder, there are separate stored objects for each target operating system.

[$./hammer.py build -p 1xc -s ubuntu -r 18.04 --ccache-dir ~/kea-ccache]

Note: ccache is currently only supported for LXC in Hammer; support for VirtualBox may be added later.

For more information check:

[$./hammer.py --help]

3.7 Running Kea From a Non-root Account on Linux

Both Kea DHCPv4 and DHCPV6 servers perform operations that in general require root access privileges. In particular,
DHCPv4 opens raw sockets and both DHCPv4 and DHCPv6 open UDP sockets on privileged ports. However, with
some extra system configuration, it is possible to run Kea from non-root accounts.

First, a regular user account must be created:

[useradd admin J

Then, change the binaries' ownership and group to the new user. Note that the specific path may be different. Please
refer to the --prefix parameter passed to the configure script:

3.7. Running Kea From a Non-root Account on Linux 19

https://ccache.samba.org/

Kea Administrator Reference Manual Documentation, Release 2.4.0

chown -R admin /opt/kea
chgrp -R admin /opt/kea
chown -R admin /var/log/kea-dhcp4.log
chgrp -R admin /var/log/kea-dhcp4.log
chown -R admin /var/log/kea-dhcp6.log
chgrp -R admin /var/log/kea-dhcp6.log

If using systemd, modify its service file (e.g. /etc/systemd/system/kea-dhcp6.service):

User=admin
Group=admin

The most important step is to set the capabilities of the binaries. Refer to man capabilities to get more information.

setcap 'cap_net_bind_service,cap_net_raw=+ep' /opt/kea/sbin/kea-dhcp4
setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp6

If using systemd, also add this to the service file (e.g. /etc/systemd/system/kea-dhcp6.service):

[ExecStartPre:setcap 'cap_net_bind_service=+ep' /opt/kea/sbin/kea-dhcp6]

After this step is complete, the admin user should be able to run Kea. Note that the DHCPv4 server by default opens
raw sockets. If the network is only using relayed traffic, Kea can be instructed to use regular UDP sockets (refer
to dhcp-socket-type parameter in the Interface Configuration section) and the cap_net_raw capability can be
skipped.

Note: It is possible to avoid running Kea with root privileges by instructing Kea to use non-privileged (greater than
1024) ports and redirecting traffic. This, however, only works for relayed traffic. This approach in general is considered
experimental and has not been tested for deployment in production environments. Use with caution!

To use this approach, configure the server to listen on other non-privileged ports (e.g. 1547 and 1548) by running the
process with the -p option in /etc/systemd/system/kea-dhcp4.service:

[ExecStart:/opt/kea/sbin/kea—dhcp4 -d -c /etc/kea/kea-dhcp4.conf -p 2067 J

and /etc/systemd/system/kea-dhcp4.service:

[ExecStart:/opt/kea/sbin/kea—dhcp6 -d -c /etc/kea/kea-dhcp6.conf -p 1547 J

Then configure port redirection with iptables and ip6tables for new ports (e.g. 1547 and 1548). Be sure to replace
ens4 with the specific interface name.

iptables -t nat -A PREROUTING -i ens4 -p udp --dport 67 -j REDIRECT --to-port 2067
iptables -t nat -A PREROUTING -i ens4 -p udp --dport 2068 -j REDIRECT --to-port 68
ip6tables -t nat -A PREROUTING -i ens4 -p udp --dport 547 -j REDIRECT --to-port 1547
ip6tables -t nat -A PREROUTING -i ens4 -p udp --dport 1548 -j REDIRECT --to-port 548

20 Chapter 3. Installation

Kea Administrator Reference Manual Documentation, Release 2.4.0

3.8 Deprecated Features

This section lists significant features that have been or will be removed. We try to deprecate features before removing
them to signal to current users to plan a migration. New users should not rely on deprecated features.

3.8.1 Sysrepo 0.x or 1.x

Kea 2.3.2 introduced support for Sysrepo 2.x. Unfortunately, Sysrepo continues to undergo major changes that are
backward-incompatible, and Kea versions 2.3.2 do not support Sysrepo earlier than versions 2.x.

3.8.2 libreload command

The 1ibreload command was deprecated in Kea 2.3.4. The code to handle this command is still there, but there are
reports of it being buggy and not really usable. Kea 2.3 and 2.4 versions will produce a warning when this command
is used, and it will be removed entirely sometime in the 2.5 branch.

3.8. Deprecated Features 21

Kea Administrator Reference Manual Documentation, Release 2.4.0

22

Chapter 3. Installation

CHAPTER
FOUR

KEA DATABASE ADMINISTRATION

4.1 Databases and Schema Versions

Kea may be configured to use a database as storage for leases or as a source of servers' configurations and host reser-
vations (i.e. static assignments of addresses, prefixes, options, etc.). As Kea is updated, new database schemas are
introduced to facilitate new features and correct discovered issues with the existing schemas.

Each version of Kea expects a particular schema structure and checks for this by examining the version of the database
it is using. Separate version numbers are maintained for the schemas, independent of the version of Kea itself. It is
possible that the schema version will stay the same through several Kea revisions; similarly, it is possible that the version
of the schema may go up several revisions during a single Kea version upgrade. Versions for each backend type are
also independent, so an increment in the MySQL backend version does not imply an increment in that of PostgreSQL.

Schema versions are specified in a major.minor format. For the most recent versions, the minor version is always zero
and only the major version is incremented.

Historically, the minor version used to be incremented when backward-compatible changes were introduced to the
schema: for example - when a new index is added. This was opposed to incrementing the major version which implied
an incompatible schema change: for example - changing the type of an existing column. If Kea attempts to run on a
schema that is too old, as indicated by a mismatched schema version, it will fail; administrative action is required to
upgrade the schema.

4.2 The kea-admin Tool

To manage the databases, Kea provides the kea-admin tool. It can initialize a new backend, check its version number,
perform a backend upgrade, and dump lease data to a text file.

kea-admin takes two mandatory parameters: command and backend. Additional, non-mandatory options may be
specified. The currently supported commands are:

e db-init — initializes a new database schema. This is useful during a new Kea installation. The database is
initialized to the latest version supported by the version of the software being installed.

* db-version — reports the database backend version number. This is not necessarily equal to the Kea version
number, as each backend has its own versioning scheme.

» db-upgrade — conducts a database schema upgrade. This is useful when upgrading Kea.

e lease-dump — dumps the contents of the lease database (for MySQL or PostgreSQL backends) to a CSV
(comma-separated values) text file.

The first line of the file contains the column names. This can be used as a way to switch from a database backend
to a memfile backend. Alternatively, it can be used as a diagnostic tool, so it provides a portable form of the lease
data.

23

Kea Administrator Reference Manual Documentation, Release 2.4.0

* lease-upload — uploads leases from a CSV (comma-separated values) text file to a MySQL or a PostgreSQL
lease database. The CSV file needs to be in memfile format.

backend specifies the type of backend database. The currently supported types are:
* memfile — lease information is stored on disk in a text file.
* mysql — information is stored in a MySQL relational database.
* pgsql — information is stored in a PostgreSQL relational database.

Additional parameters may be needed, depending on the setup and specific operation: username, password, and
database name or the directory where specific files are located. See the appropriate manual page for details (man
8 kea-admin).

4.3 Supported Backends

The following table presents the capabilities of available backends. Please refer to the specific sections dedicated to
each backend to better understand their capabilities and limitations. Choosing the right backend is essential for the
success of the deployment.

Table 1: List of available backends

Feature Memfile MySQL PostgreSQL
Status Stable Stable Stable

Data format CSV file SQLRMDB SQL RMDB
Leases yes yes yes

Host reservations no yes yes

Options defined on per host basis no yes yes
Configuration backend no yes yes

4.3.1 Memfile

The memfile backend is able to store lease information, but cannot store host reservation details; these must be stored
in the configuration file. (There are no plans to add a host reservations storage capability to this backend.)

No special initialization steps are necessary for the memfile backend. During the first run, both kea-dhcp4 and
kea-dhcp6 create an empty lease file if one is not present. Necessary disk-write permission is required.

4.3.1.1 Upgrading Memfile Lease Files From an Earlier Version of Kea

There are no special steps required to upgrade memfile lease files between versions of Kea. During startup, the servers
check the schema version of the lease files against their own. If there is a mismatch, the servers automatically launch
the LFC process to convert the files to the server's schema version. While this mechanism is primarily meant to ease
the process of upgrading to newer versions of Kea, it can also be used for downgrading should the need arise. When
upgrading, any values not present in the original lease files are assigned appropriate default values. When downgrading,
any data present in the files but not in the server's schema are dropped. To convert the files manually prior to starting
the servers, run the lease file cleanup (LFC) process. See The LFC Process for more information.

24 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 2.4.0

4.3.2 MySQL

MySQL is able to store leases, host reservations, options defined on a per-host basis, and a subset of the server config-
uration parameters (serving as a configuration backend).

4.3.2.1 MySQL 5.7 vs MySQL 8 vs MariaDB 10 and 11

In our Kea performance testing, MySQL 8 shows a 60-90% drop in speed in comparison with MySQL 5.7. Due to the
upcoming MySQL 5.7 EOL, we recommend using MariaDB instead of MySQL 8.

MySQL 5.7, MySQL 8, MariaDB 10, and MariaDB 11 are fully compatible, interchangeable, and tested with Kea.

4.3.2.2 First-Time Creation of the MySQL Database

Before preparing any Kea-specific database and tables, the MySQL database must be configured to use the system
timezone. It is recommended to use UTC as the timezone for both the system and the MySQL database.

To check the system timezone:

[date +%Z }

To check the MySQL timezone:

mysql> SELECT @@system_time_zone;
mysql> SELECT @@global.time_zone;
mysql> SELECT @@session.time_zone;

To configure the MySQL timezone for a specific server, please refer to the installed version documentation.

Usually the setting is configured in the [mysqld] section in /etc/mysql/my.cnf, /etc/mysql/mysql.cnf, /etc/
mysql/mysqld.cnf, or /etc/mysql/mysql.conf.d/mysqld.cnf.

[mysqld]
using default-time-zone
default-time-zone="'+00:00"'

or using timezone
timezone="'UTC'

L J

When setting up the MySQL database for the first time, the database area must be created within MySQL, and the
MySQL user ID under which Kea will access the database must be set up. This needs to be done manually, rather than
via kea-admin.

To create the database:

1. Log into MySQL as "root":

$ mysqgl -u root -p
Enter password:
mysql>

2. Create the MySQL database:

[mysq1> CREATE DATABASE database_name;

(database_name is the name chosen for the database.)

4.3. Supported Backends 25

Kea Administrator Reference Manual Documentation, Release 2.4.0

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the
database tables:

mysql> CREATE USER 'user-name'@'localhost' IDENTIFIED BY 'password';
mysql> GRANT ALL ON database-name.* TO 'user-name'@'localhost';

)

(user-name and password are the user ID and password used to allow Kea access to the MySQL instance. All
apostrophes in the command lines above are required.)

4. Create the database.
Exit the MySQL client

mysql> quit
Bye

Then use the kea-admin tool to create the database.

$ kea-admin db-init mysql -u database-user -p database-password -n database- ’
—.name

While it is possible to create the database from within the MySQL client, we recommend using the
kea-admin tool as it performs some necessary validations to ensure Kea can access the database at
runtime. Among those checks is verification that the schema does not contain any pre-existing tables;
any pre-existing tables must be removed manually. An additional check examines the user's ability to
create functions and triggers. The following error indicates that the user does not have the necessary
permissions to create functions or triggers:

ERROR 1419 (HYOO00) at line 1: You do not have the SUPER privilege and.
—binary logging is

enabled (you *might* want to use the less safe log_bin_trust_function_
—.creators variable)

ERROR/kea-admin: mysql_can_create cannot trigger, check user permissions,.
—mysql status = 1

mysql: [Warning] Using a password on the command line interface can be.
—,insecure.

ERROR/kea-admin: Create failed, the user, keatest, has insufficient.,
—privileges.

The simplest way around this is to set the global MySQL variable,
log_bin_trust_function_creators, to 1 via the MySQL client. Note this must be done
as a user with SUPER privileges:

mysql> set @@global.log_bin_trust_function_creators = 1;
Query OK, 0 rows affected (0.00 sec)

To create the database with MySQL directly, follow these steps:

mysql> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysql/dhcpdb_create.mysql

(where path-to-kea is the location where Kea is installed.)

The database may also be dropped manually as follows:

mysqgl> CONNECT database-name;
mysql> SOURCE path-to-kea/share/kea/scripts/mysql/dhcpdb_drop.mysql

26 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 2.4.0

(where path-to-kea is the location where Kea is installed.)

Warning: Dropping the database results in the unrecoverable loss of any data it contains.

5. Exit MySQL:

mysql> quit
Bye

If the tables were not created in Step 4, run the kea-admin tool to create them now:

[$ kea-admin db-init mysql -u database-user -p database-password -n database-name]

Do not do this if the tables were created in Step 4. kea-admin implements rudimentary checks; it will refuse to
initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid accidentally irretrievable mistakes by kea-admin.)

4.3.2.3 Upgrading a MySQL Database From an Earlier Version of Kea

Sometimes a new Kea version uses a newer database schema, so the existing database needs to be upgraded. This can
be done using the kea-admin db-upgrade command.

To check the current version of the database, use the following command:

[$ kea-admin db-version mysql -u database-user -p database-password -n database-name]

(See Databases and Schema Versions for a discussion about versioning.) If the version does not match the minimum
required for the new version of Kea (as described in the release notes), the database needs to be upgraded.

Before upgrading, please make sure that the database is backed up. The upgrade process does not discard any data, but
depending on the nature of the changes, it may be impossible to subsequently downgrade to an earlier version.

To perform an upgrade, issue the following command:

[$ kea-admin db-upgrade mysql -u database-user -p database-password -n database-name]

Note: To search host reservations by hostname, it is critical that the collation of the hostname column in the host table
be case-insensitive. Fortunately, that is the default in MySQL, but it can be verified via this command:

mysql> SELECT COLLATION('');

According to mysql's naming convention, when the name ends in _ci, the collation is case-insensitive.

4.3. Supported Backends 27

Kea Administrator Reference Manual Documentation, Release 2.4.0

4.3.2.4 Improved Performance With MySQL

Changing the MySQL internal value innodb_flush_log_at_trx_commit from the default value of 1 to 2 can result
in a huge gain in Kea performance. In some deployments, the gain was over 1000% (10 times faster when set to 2,
compared to the default value of 1). It can be set per-session for testing:

mysql> SET GLOBAL innodb_flush_log_at_trx_commit=2;
mysqgl> SHOW SESSION VARIABLES LIKE 'innodb_flush_log%';

or permanently in /etc/mysql/my.cnf:

[mysqld]
innodb_flush_log_at_trx_commit=2

Be aware that changing this value can cause problems during data recovery after a crash, so we recommend check-
ing the MySQL documentation. With the default value of 1, MySQL writes changes to disk after every IN-
SERT or UPDATE query (in Kea terms, every time a client gets a new lease or renews an existing lease). When
innodb_flush_log_at_trx_commit is set to 2, MySQL writes the changes at intervals no longer than 1 second.
Batching writes gives a substantial performance boost. The trade-off, however, is that in the worst-case scenario, all
changes in the last second before crash could be lost. Given the fact that Kea is stable software and crashes very rarely,
most deployments find it a beneficial trade-off.

4.3.3 PostgreSQL

PostgreSQL can store leases, host reservations, and options defined on a per-host basis.

4.3.3.1 First-Time Creation of the PostgreSQL Database

Before preparing any Kea-specific database and tables, the PostgreSQL database must be configured to use the system
timezone. It is recommended to use UTC as the timezone for both the system and the PostgreSQL database.

To check the system timezone:

[date +%Z }

To check the PostgreSQL timezone:

postgres=# show timezone;
postgres=# SELECT * FROM pg_timezone_names WHERE name = current_setting(
< "TIMEZONE") ;

To configure the PostgreSQL timezone for a specific server, please refer to the installed version documentation.

Usually the setting is configured in the postgresql.conf with the varying version path /etc/postgresql/
<version>/main/postgresql.conf, but on some systems the files may be located in /var/1lib/pgsql/data.

[timezone = 'UTC' }

The first task is to create both the database and the user under which the servers will access it. A number of steps are
required:

1. Log into PostgreSQL as "root":

28 Chapter 4. Kea Database Administration

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

Kea Administrator Reference Manual Documentation, Release 2.4.0

$ sudo -u postgres psql postgres
Enter password:
postgres=#

2. Create the database:

postgres=# CREATE DATABASE database-name;
CREATE DATABASE
postgres=#

(database-name is the name chosen for the database.)

3. Create the user under which Kea will access the database (and give it a password), then grant it access to the
database:

postgres=# CREATE USER user-name WITH PASSWORD 'password';

CREATE ROLE

postgres=# GRANT ALL PRIVILEGES ON DATABASE database-name TO user-name;
GRANT

postgres=#

4. Exit PostgreSQL:

postgres=# \q
Bye
$

5. At this point, create the database tables either using the kea-admin tool, as explained in the next section (rec-
ommended), or manually. To create the tables manually, enter the following command. PostgreSQL will prompt
the administrator to enter the new user's password that was specified in Step 3. When the command completes,
Kea will return to the shell prompt. The output should be similar to the following:

$ psql -d database-name -U user-name -f path-to-kea/share/kea/scripts/pgsql/dhcpdb_
—.create.pgsql

Password for user user-name:
CREATE TABLE

CREATE INDEX

CREATE INDEX

CREATE TABLE

CREATE INDEX

CREATE TABLE

START TRANSACTION

INSERT O 1

INSERT 0 1

INSERT O 1

COMMIT

CREATE TABLE

START TRANSACTION

INSERT 0 1

COMMIT

$

(path-to-kea is the location where Kea is installed.)

If instead an error is encountered, such as:

4.3. Supported Backends 29

Kea Administrator Reference Manual Documentation, Release 2.4.0

psql: FATAL: no pg_hba.conf entry for host "[local]", user "user-name", database
—"database-name", SSL off

. the PostgreSQL configuration will need to be altered. Kea uses password authentication when connecting
to the database and must have the appropriate entries added to PostgreSQL's pg_hba.conf file. This file is nor-
mally located in the primary data directory for the PostgreSQL server. The precise path may vary depending
on the operating system and version, but the default location for PostgreSQL is /etc/postgresql/*/main/
postgresql.conf. However, on some systems (notably CentOS 8), the file may reside in /var/lib/pgsql/
data.

Assuming Kea is running on the same host as PostgreSQL, adding lines similar to the following should be
sufficient to provide password-authenticated access to Kea's database:

local database-name user-name password
host database-name user-name 127.0.0.1/32 password
host database-name user-name 1:1/128 password

These edits are primarily intended as a starting point, and are not a definitive reference on PostgreSQL admin-
istration or database security. Please consult the PostgreSQL user manual before making these changes, as they
may expose other databases that are running. It may be necessary to restart PostgreSQL for the changes to take
effect.

4.3.3.2 Initialize the PostgreSQL Database Using kea-admin

If the tables were not created manually, do so now by running the kea-admin tool:

[$ kea-admin db-init pgsql -u database-user -p database-password -n database-name J

Do not do this if the tables were already created manually. kea-admin implements rudimentary checks; it will refuse
to initialize a database that contains any existing tables. To start from scratch, all data must be removed manually. (This
process is a manual operation on purpose, to avoid accidentally irretrievable mistakes by kea-admin.)

4.3.3.3 Upgrading a PostgreSQL Database From an Earlier Version of Kea

The PostgreSQL database schema can be upgraded using the same tool and commands as described in Upgrading a
MySQL Database From an Earlier Version of Kea, with the exception that the "pgsql" database backend type must be
used in the commands.

Use the following command to check the current schema version:

[$ kea-admin db-version pgsql -u database-user -p database-password -n database-name]

Use the following command to perform an upgrade:

[$ kea-admin db-upgrade pgsql -u database-user -p database-password -n database-name]

30 Chapter 4. Kea Database Administration

Kea Administrator Reference Manual Documentation, Release 2.4.0

4.3.3.4 PostgreSQL without OpenSSL support

Usually the PostgreSQL database client library is built with the OpenSSL support but Kea can be configured to handle
the case where it is not supported:

[$./configure [other-options] --disable-pgsql-ssl]

4.3.3.5 Improved Performance With PostgreSQL

Changing the PostgreSQL internal value synchronous_commit from the default value of ON to OFF can result in
significant gains in Kea performance; on slow systems, the gain can be over 1000%. It can be set per-session for testing:

[postgres=# SET synchronous_commit = OFF;]

or permanently via command (preferred method):

[postgres:# ALTER SYSTEM SET synchronous_commit=OFF; J

or permanently in /etc/postgresql/[version] /main/postgresql.conf:

[synchronous_commit = off]

Changing this value can cause problems during data recovery after a crash, so we recommend a careful read of
the PostgreSQL documentation. With the default value of ON, PostgreSQL writes changes to disk after every IN-
SERT or UPDATE query (in Kea terms, every time a client gets a new lease or renews an existing lease). When
synchronous_commit is set to OFF, PostgreSQL adds some delay before writing the changes. Batching writes gives
a substantial performance boost, but in the worst-case scenario, all changes in the last moment before a crash could be
lost. Since Kea is stable software and crashes very rarely, most deployments find the performance benefits outweigh
the potential risks.

4.3.4 Using Read-Only Databases With Host Reservations

If aread-only database is used for storing host reservations, Kea must be explicitly configured to operate on the database
in read-only mode. Sections Using Read-Only Databases for Host Reservations With DHCPv4 and Using Read-Only
Databases for Host Reservations with DHCPv6 describe when such a configuration may be required, and how to
configure Kea to operate in this way for both DHCPv4 and DHCPv6.

4.3.5 Limitations Related to the Use of SQL Databases
4.3.5.1 Year 2038 Issue

The lease expiration time in Kea is stored in the SQL database for each lease as a timestamp value. Kea developers have
observed that the MySQL database does not accept timestamps beyond 2147483647 seconds (the maximum signed 32-
bit number) from the beginning of the UNIX epoch (00:00:00 on 1 January 1970). Some versions of PostgreSQL
do accept greater values, but the value is altered when it is read back. For this reason, the lease database backends
put a restriction on the maximum timestamp to be stored in the database, which is equal to the maximum signed 32-
bit number. This effectively means that the current Kea version cannot store leases whose expiration time is later than
2147483647 seconds since the beginning of the epoch (around the year 2038). This will be fixed when database support
for longer timestamps is available.

4.3. Supported Backends 31

https://www.postgresql.org/docs/current/wal-async-commit.html

Kea Administrator Reference Manual Documentation, Release 2.4.0

32 Chapter 4. Kea Database Administration

CHAPTER
FIVE

KEA CONFIGURATION

Kea uses JSON structures to represent server configurations. The following sections describe how the configuration
structures are organized.

5.1 JSON Configuration

JSON is the notation used throughout the Kea project. The most obvious usage is for the configuration file, but JSON
is also used for sending commands over the Management API (see Management API') and for communicating between
DHCP servers and the DDNS update daemon.

Typical usage assumes that the servers are started from the command line, either directly or using a script, e.g. keactrl.
The configuration file is specified upon startup using the -c parameter.

5.1.1 JSON Syntax

Configuration files for the DHCPv4, DHCPv6, DDNS, Control Agent, and NETCONF modules are defined in an
extended JSON format. Basic JSON is defined in RFC 7159 and ECMA 404. In particular, the only boolean values
allowed are true or false (all lowercase). The capitalized versions (True or False) are not accepted.

Even though the JSON standard (ECMA 404) does not require JSON objects (i.e. name/value maps) to have unique
entries, Kea implements them using a C++ STL map with unique entries. Therefore, if there are multiple values for
the same name in an object/map, the last value overwrites previous values. Since Kea 1.9.0, configuration file parsers
raise a syntax error in such cases.

Kea components use extended JSON with additional features allowed:
* Shell comments: any text after the hash (#) character is ignored.
* C comments: any text after the double slashes (//) character is ignored.
* Multiline comments: any text between /* and */ is ignored. This comment can span multiple lines.
* File inclusion: JSON files can include other JSON files by using a statement of the form <?include "file.json"?>.

» Extra commas: to remove the inconvenience of errors caused by leftover commas after making changes to con-
figuration. While parsing, a warning is printed with the location of the comma to give the user the ability to
correct a potential mistake.

Warning: These features are meant to be used in a JSON configuration file. Their usage in any other way may
result in errors.

33

https://tools.ietf.org/html/rfc7159
https://www.ecma-international.org/publications/standards/Ecma-404.htm

Kea Administrator Reference Manual Documentation, Release 2.4.0

The configuration file consists of a single object (often colloquially called a map) started with a curly bracket. It
comprises only one of the "Dhcp4", "Dhcp6", "DhcpDdns", "Control-agent", or "Netconf" objects. It is possible to
define additional elements but they will be ignored.

A very simple configuration for DHCPv4 could look like this:

The whole configuration starts here.
{
DHCPv4 specific configuration starts here.
"Dhcp4": {
"interfaces-config": {
"interfaces": ["eth®"],
"dhcp-socket-type": "raw"
e
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,
"subnet4": [{
"pools": [{ "pool": "192.0.2.1-192.0.2.200" }],
"subnet": "192.0.2.0/24",
"id": 1
1,

Now loggers are inside the DHCPv4 object.
"loggers": [{

"name": "*",

"severity'": "DEBUG"
H

}

The whole configuration structure ends here.

}

More examples are available in the installed share/doc/kea/examples directory.

To avoid repetition of mostly similar structures, examples in the rest of this guide will showcase only the subset of
parameters appropriate for a given context. For example, when discussing the IPv6 subnets configuration in DHCPv6,
only subnet6 parameters will be mentioned. It is implied that the remaining elements (the global map that holds Dhcp6)
are present, but they are omitted for clarity. Usually, locations where extra parameters may appear are denoted by an
ellipsis (...).

5.1.2 Comments and User Context

Shell, C, or C++ style comments are all permitted in the JSON configuration file if the file is used locally. This is
convenient and works in simple cases where the configuration is kept statically using a local file. However, since
comments are not part of JSON syntax, most JSON tools detect them as errors. Another problem with them is that
once Kea loads its configuration, the shell, C, and C++ style comments are ignored. If commands such as config-get
or config-write are used, those comments are lost. An example of such comments was presented in the previous
section.

Historically, to address the problem, Kea code allowed the use of comment strings as valid JSON entities. This had the
benefit of being retained through various operations (such as config-get), or allowing processing by JSON tools. An
example JSON comment looks like this:

34 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 2.4.0

"Dhcpd": {
"subnet4": [{
"id": 1,

"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }],
"comment": "second floor"

3]

However, the facts that the comment could only be a single line, and that it was not possible to add any other information
in a more structured form, were frustrating. One specific example was a request to add floor levels and building numbers
to subnets. This was one of the reasons why the concept of user context was introduced. It allows adding an arbitrary
JSON structure to most Kea configuration structures.

This has a number of benefits compared to earlier approaches. First, it is fully compatible with JSON tools and Kea
commands. Second, it allows storing simple comment strings, but it can also store much more complex data, such as
multiple lines (as a string array), extra typed data (such as floor numbers being actual numbers), and more. Third, the
data is exposed to hooks, so it is possible to develop third-party hooks that take advantage of that extra information.
An example user context looks like this:

"Dhcp4d": {
"subnet4": [{
"id": 1,

"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" }1,
"user-context": {

"comment": "second floor",

"floor": 2

}]

User contexts can store an arbitrary data file as long as it has valid JSON syntax and its top-level element is a map
(i.e. the data must be enclosed in curly brackets). However, some hook libraries may expect specific formatting; please
consult the specific hook library documentation for details.

In a sense the user-context mechanism has superseded the JSON comment capabilities; ISC encourages administrators
to use user-context instead of the older mechanisms. To promote this way of storing comments, Kea compared converts
JSON comments to user-context on the fly.

However, if the configuration uses the old JSON comment, the config-get command returns a slightly modified
configuration. It is not uncommon for a call for config-set followed by a config-get to receive a slightly different
structure. The best way to avoid this problem is simply to abandon JSON comments and use user-context.

Kea supports user contexts at the following levels: global scope, interfaces configuration, shared networks, subnets,
client classes, option data and definitions, host reservations, control socket, DHCP-DDNS, loggers, leases, and server
ID. These are supported in both DHCPv4 and DHCPv6, with the exception of server ID, which is DHCPv6 only.

User context can be added and edited in structures supported by commands.
We encourage Kea users to utilize these functions to store information used by other systems and custom hooks.

For example, the subnet4-update command can be used to add user context data to an existing subnet.

{
"subnet4": [{
(continues on next page)

5.1. JSON Configuration 35

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)
"id": 1,
"subnet": "10.20.30.0/24",
"user-context": {
"building": "Main",
"floor": 1
}
11
3

The same can be done with many other commands, like Iease6-add, etc.

Kea also uses user context to store non-standard data. Currently, only Storing Extended Lease Information uses this
feature.

When enabled, it adds the ISC key in user-context to differentiate automatically added content.

Example of relay information stored in a lease:

{
"arguments": {
"client-id": "42:42:42:42:42:42:42:42",
"cltt": 12345678,
"fqdn-fwd": false,
"fqdn-rev": true,
"hostname": "myhost.example.com.",
"hw-address": "08:08:08:08:08:08",
"ip-address": "192.0.2.1",
"state": O,
"subnet-id": 44,
"valid-1ft": 3600,
"user-context": {
"ISC": {
"relays": [
{
"hop": 2,
"link": "2001:db8::1",
"peer": "2001:db8::2"

L
{
"hop": 1,
"link": "2001:db8::3",
"options": "0x00C300080102030405060708",
"peer": "2001:db8::4"
1
}
}
3
}

User context can store configuration for multiple hooks and comments at once.

For a discussion about user context used in hooks, see User Contexts in Hooks.

36 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 2.4.0

5.1.3 Simplified Notation

It is sometimes convenient to refer to a specific element in the configuration hierarchy. Each hierarchy level is separated
by a slash. If there is an array, a specific instance within that array is referenced by a number in square brackets
(with numbering starting at zero). For example, in the above configuration the valid-lifetime in the Dhcp4 component
can be referred to as Dhcp4/valid-lifetime, and the pool in the first subnet defined in the DHCPv4 configuration as
Dhcp4/subnet4[0]/pool.

5.2 Kea Configuration Backend

5.2.1 Applicability

Kea Configuration Backend (CB or config backend) gives Kea servers the ability to manage and fetch their configuration
from one or more databases. In this documentation, the term "Configuration Backend" may also refer to the particular
Kea module providing support to manage and fetch the configuration information from the particular database type.
For example, the MySQL Configuration Backend is the logic implemented within 1ibdhcp_mysql_cb.so, which
provides a complete set of functions to manage and fetch the configuration information from the MySQL database.
The PostgreSQL Configuration Backend is the logic implemented within 1ibdhcp_pgsql_cb. so, which provides a
complete set of functions to manage and fetch the configuration information from the PostgreSQL database. From
herein, the term "database" is used to refer to either a MySQL or PostgreSQL database.

In small deployments, e.g. those comprising a single DHCP server instance with limited and infrequently changing
number of subnets, it may be impractical to use the CB as a configuration repository because it requires additional third-
party software to be installed and configured - in particular the database server, client and libraries. Once the number of
DHCP servers and/or the number of managed subnets in the network grows, the usefulness of the CB becomes obvious.

One use case for the CB is a pair of Kea DHCP servers that are configured to support High Availability as described
in libdhcp_ha.so: High Availability Outage Resilience for Kea Servers. The configurations of both servers (including
the value of the server-tag parameter) are almost exactly the same: they may differ by the server identifier and
designation of the server as a primary or standby (or secondary), and/or by their interfaces' configuration. Typically,
the subnets, shared networks, option definitions, and global parameters are the same for both servers and can be sourced
from a single database instance to both Kea servers.

Using the database as a single source of configuration for subnets and/or other configuration information supported by
the CB has the advantage that any modifications to the configuration in the database are automatically applied to both
Sservers.

Another case when the centralized configuration repository is useful is in deployments including a large number of
DHCEP servers, possibly using a common lease database to provide redundancy. New servers can be added to the
pool frequently to fulfill growing scalability requirements. Adding a new server does not require replicating the entire
configuration to the new server when a common database is used.

Using the database as a configuration repository for Kea servers also brings other benefits, such as:
« the ability to use database specific tools to access the configuration information;
* the ability to create customized statistics based on the information stored in the database; and

* the ability to backup the configuration information using the database's built-in replication mechanisms.

5.2. Kea Configuration Backend 37

Kea Administrator Reference Manual Documentation, Release 2.4.0

5.2.2 CB Capabilities and Limitations

Currently, the Kea CB has the following limitations:
* It is only supported for MySQL and PostgreSQL databases.

e It is only supported for the DHCPv4 and DHCPv6 daemons; the Control Agent, D2 daemon, and the NETCONF
daemon cannot be configured from the database,

* Only certain DHCP configuration parameters can be set in the database: global parameters, option definitions,
global options, client classes, shared networks, and subnets. Other configuration parameters must be sourced
from a JSON configuration file.

Kea CB stores data in a schema that is public. It is possible to insert configuration data into the tables manually or
automatically using SQL scripts, but this requires SQL and schema knowledge. The supported method for managing
the data is through Iibdhcp_cb_cmds. so, which provides management commands for config backends. It simplifies
many typical operations, such as listing, adding, retrieving, and deleting global parameters, shared networks, subnets,
pools, options, option definitions, and client classes. In addition, it provides essential business logic that ensures the
logical integrity of the data. See commands starting with remote- in Appendix A of this manual for a complete list.

Note: I1ibdhcp_cb_cmds. so is available only to ISC customers with a paid support contract. For more information
on subscription options, please complete the form at https://www.isc.org/contact.

The schema creation scripts can be found at dhcpdb_create.mysql and ; dhcpdb_create.pgsql and ; other related design
documents are stored in our GitLab: CB Design and Client Classes in CB Design.

We strongly recommend against duplication of configuration information in both the file and the database. For ex-
ample, when specifying subnets for the DHCP server, please store them in either the configuration backend or in the
configuration file, not both. Storing some subnets in the database and others in the file may put users at risk of potential
configuration conflicts. Note that the configuration instructions from the database take precedence over instructions
from the file, so parts of the configuration specified in the file may be overridden if contradicted by information in the
database.

Although it is not recommended, it is possible to specify certain parameter types both in a configuration file and the
database. For example, a subnet can be specified in the configuration file and another subnet in the database; in this
case, the server will use both subnets. DHCP client classes, however, must not be specified in both the configuration
file and the database, even if they do not overlap. If any client classes are specified in the database for a particular
DHCEP server, this server will use these classes and ignore all classes present in its configuration file. This behavior
was introduced to ensure that the server receives a consistent set of client classes specified in an expected order with
all inter-class dependencies fulfilled. It is impossible to guarantee consistency when client classes are specified in two
independent configuration sources.

Note: It is recommended that 1ibsubnet_cmds. so not be used to manage subnets when the configuration backend
is used as a source of information about the subnets. 1ibsubnet_cmds.so modifies the local subnets configuration
in the server's memory, not in the database. Use 1ibcb_cmds. so to manage the subnets information in the database
instead.

Note: Using custom option formats requires creating definitions for these options. Suppose a user wishes to set
option data in the configuration backend. In that case, we recommend specifying the definition for that option in the
configuration backend as well. It is essential when multiple servers are managed via the configuration backend, and
may differ in their configurations. The option data parser can search for an option definition appropriate for the server
for which the option data is specified.

In a single-server deployment, or when all servers share the same configuration file information, it is possible to specify

38 Chapter 5. Kea Configuration

https://www.isc.org/contact
https://gitlab.isc.org/isc-projects/kea/blob/master/src/share/database/scripts/mysql/dhcpdb_create.mysql
https://gitlab.isc.org/isc-projects/kea/blob/master/src/share/database/scripts/pgsql/dhcpdb_create.pgsql
https://gitlab.isc.org/isc-projects/kea/wikis/designs/configuration-in-db-design
https://gitlab.isc.org/isc-projects/kea/wikis/designs/client-classes-in-cb

Kea Administrator Reference Manual Documentation, Release 2.4.0

option definitions in the configuration files and option data in the configuration backend. The server receiving a com-
mand to set option data must have a valid definition in its configuration file, even when it sets option data for another
server.

It is not supported to specify option definitions in the configuration backend and the corresponding option data in the
server configuration files.

5.2.3 CB Components

To use a MySQL configuration backend you must compile 1ibdhcp_mysql_ch. so and configure the DHCP servers
to load it. It is compiled when the --with-mysql configuration switch is used during the Kea build. The MySQL C
client libraries must be installed, as explained in DHCP Database Installation and Configuration.

To use a PostgreSQL configuration backend you must compile 1ibdhcp_pgsql_cb.so and configure the DHCP
servers to load it. It is compiled when the --with-pgsql configuration switch is used during the Kea build. The
PostgreSQL C client libraries must be installed, as explained in DHCP Database Installation and Configuration.

Note: An existing database schema must be upgraded to the latest schema required by the particular Kea version using
the kea-admin tool, as described in The kea-admin Tool.

libdhcp_cb_cmds. so provides a complete set of commands to manage the servers' configuration information within
the database. This library can be attached to both DHCPv4 and DHCPv6 server instances. While it is possible to
manage the configuration information without 1ibdhcp_cb_cmds. so with commonly available tools, such as MySQL
Workbench or the command-line MySQL client, or by directly working with the database; these avenues are neither
recommended nor supported.

The DHCPv4 and DHCPv6 server-specific configurations of the CB, as well as the list of supported configuration
parameters, can be found in Configuration Backend in DHCPv4 and Configuration Backend in DHCPv6, respectively.

5.2.4 Configuration Sharing and Server Tags

The configuration database is designed to store configuration information for multiple Kea servers. Depending on the
use case, the entire configuration may be shared by all servers; parts of the configuration may be shared by multiple
servers and the rest of the configuration may be different for these servers; or each server may have its own non-shared
configuration.

The configuration elements in the database are associated with the servers by "server tags." The server tag is an arbitrary
string holding the name of the Kea server instance. The tags of the DHCPv4 and DHCPv6 servers are independent
in the database, i.e. the same server tag can be created for both the DHCPv4 and the DHCPv6 server. The value is
configured using the server-tag parameter in the Dhcp4 or Dhcp6 scope. The current server tag can be checked with
the server-tag-get command.

The server definition, which consists of the server tag and the server description, must be stored in the configuration
database prior to creating the dedicated configuration for that server. In cases when all servers use the same configu-
ration, e.g. a pair of servers running as High Availability peers, there is no need to configure the server tags for these
servers in the database.

Commands which contain the logical server all are applied to all servers connecting to the database. The all server
cannot be deleted or modified, and it is not returned among other servers as a result of the remote-server4-get-all,
remote-server6-get-all commands.

In most cases, there are no server tags defined in the configuration database; all connecting servers get the same con-
figuration regardless of the server tag they use. The server tag that a particular Kea instance presents to the database to

5.2. Kea Configuration Backend 39

Kea Administrator Reference Manual Documentation, Release 2.4.0

fetch its configuration is specified in the Kea configuration file, using the config-control map (please refer to the En-
abling the Configuration Backend and Enabling the Configuration Backend for details). All Kea instances presenting
the same server tag to the configuration database are given the same configuration.

It is the administrator's choice whether multiple Kea instances use the same server tag or each Kea instance uses a
different server tag. There is no requirement that the instances running on the same physical or virtual machine use
the same server tag. It is even possible to configure the Kea server without assigning it a server tag. In such a case the
server will be given the configuration specified for all servers.

To differentiate between different Kea server configurations, a list of the server tags used by the servers must be stored
in the database. For the DHCPv4 and DHCPvG6 servers, it can be done using the command-remote-server4-set and
command-remote-server6-set commands. The server tags can then be used to associate the configuration infor-
mation with the servers. However, it is important to note that some DHCP configuration elements may be associated
with multiple server tags (known as "shareable" elements), while other configuration elements may be associated with
only one server tag ("non-shareable" elements). The Configuration Backend in DHCPv4 and Configuration Backend in
DHCPv6 sections list the DHCP-specific shareable and non-shareable configuration elements; however, in this section
we briefly explain the differences between them.

A shareable configuration element is one which has some unique property identifying it, and which may appear only
once in the database. An example of a shareable DHCP element is a subnet instance: the subnet is a part of the network
topology and we assume that any particular subnet may have only one definition within this network. Each subnet has
two unique identifiers: the subnet identifier and the subnet prefix. The subnet identifier is used in Kea to uniquely
identify the subnet within the network and to connect it with other configuration elements, e.g. in host reservations.
Some commands provided by 1ibdhcp_cb_cmds. so allow the subnet information to be accessed by either subnet
identifier or prefix, and explicitly prohibit using the server tag to access the subnet. This is because, in general, the
subnet definition is associated with multiple servers rather than a single server. In fact, it may even be associated with
no servers (unassigned). Still, the unassigned subnet has an identifier and prefix which can be used to access the subnet.

A shareable configuration element may be associated with multiple servers, one server, or no servers. Deletion of the
server which is associated with the shareable element does not cause the deletion of the shareable element. It merely
deletes the association of the deleted server with the element.

Unlike a shareable element, a non-shareable element must not be explicitly associated with more than one server and
must not exist after the server is deleted (must not remain unassigned). A non-shareable element only exists within the
context of the server. An example of a non-shareable element in DHCP is a global parameter, e.g. renew-timer. The
renew timer is the value to be used by a particular server and only this server. Other servers may have their respective
renew timers set to the same or different values. The renew timer parameter has no unique identifier by which it could
be accessed, modified, or otherwise used. Global parameters like the renew timer can be accessed by the parameter
name and the tag of the server for which they are configured. For example, the remote-global-parameter4-get and
remote-global-parameter6-get commands allow the value of the global parameter to be fetched by the parameter
name and the server name. Getting the global parameter only by its name (without specifying the server tag) is not
possible, because there may be many global parameters with a given name in the database.

When the server associated with a non-shareable configuration element is deleted, the configuration element is auto-
matically deleted from the database along with the server because the non-shareable element must be always assigned
to a server (or the logical server all).

The terms "shareable" and "non-shareable" only apply to associations with user-defined servers; all configuration ele-
ments associated with the logical server all are by definition shareable. For example: the renew-timer associated with
all servers is used by all servers connecting to the database which do not have their specific renew timers defined. In a
special case, when none of the configuration elements are associated with user-defined servers, the entire configuration
in the database is shareable because all its pieces belong to all servers.

Note: Be very careful when associating configuration elements with different server tags. The configuration backend
does not protect against some possible misconfigurations that may arise from the wrong server tags' assignments. For
example: if a shared network is assigned to one server and the subnets belonging to this shared network to another
server, the servers will fail upon trying to fetch and use this configuration. The server fetching the subnets will be

40 Chapter 5. Kea Configuration

Kea Administrator Reference Manual Documentation, Release 2.4.0

aware that the subnets are associated with the shared network, but the shared network will not be found by this server
since it doesn't belong to it. In such a case, both the shared network and the subnets should be assigned to the same set
of servers.

5.2.5 Configuration Files Inclusion

The parser provides the ability to include files. The syntax was chosen to look similar to how Apache includes PHP
scripts in HTML code. This particular syntax was chosen to emphasize that the include directive is an additional feature
and not a part of JSON syntax.

The inclusion is implemented as a stack of files. You can use the include directive in nested includes. Up to ten nesting
levels are supported. This arbitrarily chosen limit is protection against recursive inclusions.

The include directive has the form:

[<?inc1ude " [PATH]"?> J

The [PATH] pattern should be replaced with an absolute path or a path relative to the current working directory at the
time the Kea process was launched.

To include one file from another, use the following syntax:

{
"Dhcp6": {
"interfaces-config": {
"interfaces": ["*" 13},
"preferred-lifetime": 3000,
"rebind-timer": 2000,
"renew-timer": 1000,
<?include "subnets.json"?>
"valid-lifetime": 4000

where the content of "subnets.json" may be:

{
"subnet4": [
{
"id": 123,
"subnet": "192.0.2.0/24"
e
{
"id": 234,
"subnet": "192.0.3.0/24"
e
{
"id": 345,
"subnet": "10.0.0.0/8"
}
1,
}

5.2. Kea Configuration Backend 41

Kea Administrator Reference Manual Documentation, Release 2.4.0

42

Chapter 5. Kea Configuration

CHAPTER
SIX

MANAGING KEA WITH KEACTRL

6.1 Overview

keactrl is a shell script which controls the startup, shutdown, and reconfiguration of the Kea servers (kea-dhcp4,
kea-dhcp6, kea-dhcp-ddns, kea-ctrl-agent, and kea-netconf). It also provides the means for checking the
current status of the servers and determining the configuration files in use.

keactrl is available only when Kea is built from sources. When installing Kea using native packages, the native
systemd scripts are provided. See Native Packages and systemd Section for details.

6.2 Command Line Options

keactrl is run as follows:

[# keactrl <command> [-c keactrl-config-file] [-s server[,server,...]]

<command> is one of the commands described in Commands.

The optional -c keactrl-config-file switch allows specification of an alternate keactrl configuration file.
(--ctrl-config is a synonym for -c.) In the absence of -c, keactrl uses the default configuration file
[kea-install-dir]/etc/kea/keactrl.conf.

The optional -s server[,server,...] switch selects the servers to which the command is issued. (--server is a
synonym for -s.) If absent, the command is sent to all servers enabled in the keactrl configuration file. If multiple
servers are specified, they should be separated by commas with no intervening spaces.

6.3 The keactrl Configuration File

Depending on the administrator's requirements, it may not be necessary to run all of the available servers. The
keactrl configuration file sets which servers are enabled and which are disabled. The default configuration file is
[kea-install-dir]/etc/kea/keactrl.conf, but this can be overridden on a per-command basis using the -c
switch.

The contents of keactrl.conf are:

This is a configuration file for keactrl script which controls
the startup, shutdown, reconfiguration and gathering the status
of the Kea processes.

(continues on next page)

43

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

prefix holds the location where the Kea is installed.
prefix=@prefix@

Location of Kea configuration file.
kea_dhcp4_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp4.conf
kea_dhcp6_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp6.conf
kea_dhcp_ddns_config_file=@sysconfdir@/@PACKAGE@/kea-dhcp-ddns.conf
kea_ctrl_agent_config_file=@sysconfdir@/@PACKAGE@/kea-ctrl-agent.conf
kea_netconf_config_file=@sysconfdir@/@PACKAGE@/kea-netconf.conf

Location of Kea binaries.
exec_prefix=@exec_prefix@
dhcp4_srv=@sbindir@/kea-dhcp4
dhcp6_srv=@sbindir@/kea-dhcp6
dhcp_ddns_srv=@sbindir@/kea-dhcp-ddns
ctrl_agent_srv=@sbindir@/kea-ctrl-agent
netconf_srv=@sbindir@/kea-netconf

Start DHCPv4 server?
dhcpd=yes

Start DHCPv6 server?
dhcpb6=yes

Start DHCP DDNS server?
dhcp_ddns=no

Start Control Agent?
ctrl_agent=yes

Start Netconf?
netconf=no

Be verbose?
kea_verbose=no

Note: In the example above, strings of the form @something@ are replaced by the appropriate values when Kea is
installed.

Setting the dhcp4, dhcp6, dhcp_ddns, ctrl_agent, and netconf parameters set to "yes" configures keactrl
to manage (start, reconfigure) all servers, i.e. kea-dhcp4, kea-dhcp6, kea-dhcp-ddns, kea-ctrl-agent, and
kea-netconf. When any of these parameters is set to "no", keactrl ignores the corresponding server when starting
or reconfiguring Kea. Some daemons (dhcp_ddns and netconf) are disabled by default.

By default, Kea servers managed by keactrl are located in [kea-install-dir]/sbin. This should work for
most installations. If the default location needs to be altered, the paths specified with the dhcp4_srv, dhcp6_srv,
dhcp_ddns_srv, ctrl_agent_srv, and netconf_srv parameters should be modified.

The kea_verbose parameter specifies the verbosity of the servers being started. When kea_verbose is set to yes, the
logging level of the server is set to DEBUG. Modification of the logging severity in a configuration file, as described
in Logging, will have no effect as long as kea_verbose is set to "yes." Setting it to "no" causes the server to use the
logging levels specified in the Kea configuration file. If no logging configuration is specified, the default settings are

44 Chapter 6. Managing Kea with keactrl

Kea Administrator Reference Manual Documentation, Release 2.4.0

used.

Note: The verbosity for the server is set when it is started. Once started, the verbosity can only be changed by stopping
the server and starting it again with the new value of the kea_verbose parameter.

6.4 Commands

The following commands are supported by keactrl:
* start - starts the selected servers.
e stop - stops all running servers.
* reload - triggers reconfiguration of the selected servers by sending the SIGHUP signal to them.
* status - returns the status of the servers (active or inactive) and the names of the configuration files in use.
e version - prints out the version of the keactrl tool itself, together with the versions of the Kea daemons.

Typical output from keactrl when starting the servers looks similar to the following:

$ keactrl start

INFO/keactrl: Starting kea-dhcp4 -c /usr/local/etc/kea/kea-dhcp4.conf -d
INFO/keactrl: Starting kea-dhcp6 -c /usr/local/etc/kea/kea-dhcp6.conf -d
INFO/keactrl: Starting kea-dhcp-ddns -c /usr/local/etc/kea/kea-dhcp-ddns.conf -d
INFO/keactrl: Starting kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf -d
INFO/keactrl: Starting kea-netconf -c /usr/local/etc/kea/kea-netconf.conf -d

Kea's servers create PID files upon startup. These files are used by keactrl to determine whether a given server is
running. If one or more servers are running when the start command is issued, the output looks similar to the following:

$ keactrl start

INFO/keactrl: kea-dhcp4 appears to be running, see: PID 10918, PID file: /usr/local/var/
—run/kea/kea.kea-dhcp4.pid.

INFO/keactrl: kea-dhcp6 appears to be running, see: PID 10924, PID file: /usr/local/var/
—run/kea/kea.kea-dhcp6.pid.

INFO/keactrl: kea-dhcp-ddns appears to be running, see: PID 10930, PID file: /usr/local/
—var/run/kea/kea.kea-dhcp-ddns.pid.

INFO/keactrl: kea-ctrl-agent appears to be running, see: PID 10931, PID file: /usr/local/
—var/run/kea/kea.kea-ctrl-agent.pid.

INFO/keactrl: kea-netconf appears to be running, see: PID 10123, PID file: /usr/local/
—var/run/kea/kea.kea-netconf.pid.

During normal shutdowns, these PID files are deleted; they may, however, be left over as remnants following a system
crash. It is possible, though highly unlikely, that upon system restart the PIDs they contain may actually refer to
processes unrelated to Kea. This condition will cause keactrl to decide that the servers are running, when in fact they
are not. In such a case the PID files listed in the keactrl output must be manually deleted.

The following command stops all servers:

$ keactrl stop

INFO/keactrl: Stopping kea-dhcp4...
INFO/keactrl: Stopping kea-dhcp6...
INFO/keactrl: Stopping kea-dhcp-ddns...

(continues on next page)

6.4. Commands 45

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

INFO/keactrl: Stopping kea-ctrl-agent...
INFO/keactrl: Stopping kea-netconf...

Note that the stop command attempts to stop all servers regardless of whether they are "enabled" in keactrl. conf.
If any of the servers are not running, an informational message is displayed as in the stop command output below.

$ keactrl stop

INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

As already mentioned, the reconfiguration of each Kea server is triggered by the SIGHUP signal. The reload command
sends the SIGHUP signal to any servers that are enabled in the keactrl configuration file and that are currently running.
When a server receives the SIGHUP signal it rereads its configuration file and, if the new configuration is valid, uses the
new configuration. If the new configuration proves to be invalid, the server retains its current configuration; however,
in some cases a fatal error message is logged indicating that the server is no longer providing any service: a working
configuration must be loaded as soon as possible.

A reload is executed as follows:

$ keactrl reload

INFO/keactrl: Reloading kea-dhcp4...
INFO/keactrl: Reloading kea-dhcp6...
INFO/keactrl: Reloading kea-dhcp-ddns...
INFO/keactrl: Reloading kea-ctrl-agent...

If any of the servers are not running, an informational message is displayed as in the reload command output below.
kea-netconf does not support the SIGHUP signal. If its configuration has changed, please stop and restart it for the
change to take effect.

$ keactrl stop

INFO/keactrl: kea-dhcp4 isn't running.
INFO/keactrl: kea-dhcp6 isn't running.
INFO/keactrl: kea-dhcp-ddns isn't running.
INFO/keactrl: kea-ctrl-agent isn't running.
INFO/keactrl: kea-netconf isn't running.

Note: NETCONEF is an optional feature that is disabled by default and can be enabled during compilation. If Kea
was compiled without NETCONF support, keactrl does not provide information about it. The NETCONF entries
are still present in the keactrl. conf file, but NETCONF status is not shown and other commands ignore it.

Note: Currently keactrl does not report configuration failures when the server is started or reconfigured. To check
if the server's configuration succeeded, the Kea log must be examined for errors. By default, the log is written to the
syslog file.

Sometimes it is useful to check which servers are running. The status command reports this, with typical output that
looks like:

46 Chapter 6. Managing Kea with keactrl

Kea Administrator Reference Manual Documentation, Release 2.4.0

Kea
Kea
Kea
Kea
Kea
Kea

$ keactrl status

DHCPv4 server: active
DHCPv6 server: inactive
DHCP DDNS: active
Control Agent: active
Netconf agent: inactive

configuration file: /usr/local/etc/kea/kea.conf

DHCPv4 configuration file: /usr/local/etc/kea/kea-dhcp4.conf

DHCPv6 configuration file: /usr/local/etc/kea/kea-dhcp6.conf

DHCP DDNS configuration file: /usr/local/etc/kea/kea-dhcp-ddns.conf
Control Agent configuration file: /usr/local/etc/kea/kea-ctrl-agent.conf
Netconf configuration file: /usr/local/etc/kea/kea-netconf.conf

keactrl configuration file: /usr/local/etc/kea/keactrl.conf

keactrl status offers basic reporting capabilities. For more extensive insight into Kea's health and status, consider
deploying Stork. For details, see Monitoring Kea With Stork.

6.5 Overriding the Server Selection

The optional -s switch allows the selection of the server(s) to which the keactrl command is issued. For example,
the following instructs keactrl to stop the kea-dhcp4 and kea-dhcp6 servers and leave the kea-dhcp-ddns and
kea-ctrl-agent running:

[$ keactrl stop -s dhcp4,dhcp6

J

Similarly, the following starts only the kea-dhcp4 and kea-dhcp-ddns servers, but not kea-dhcp6 or
kea-ctrl-agent.

[$ keactrl start -s dhcp4,dhcp_ddns

}

Note that the behavior of the -s switch with the start and reload commands is different from its behavior with the
stop command. On start and reload, keactrl checks whether the servers given as parameters to the -s switch
are enabled in the keactrl configuration file; if not, the server is ignored. For stop, however, this check is not made;

the command is applied to all listed servers, regardless of whether they have been enabled in the file.

The following keywords can be used with the -s command-line option:

dhcp4 for kea-dhcp4.

dhcp6 for kea-dhcpé.

dhcp_ddns for kea-dhcp-ddns.
ctrl_agent for kea-ctrl-agent.
netconf for kea-netconf.

all for all servers (default).

6.5. Overriding the Server Selection

47

Kea Administrator Reference Manual Documentation, Release 2.4.0

6.6 Native Packages and systemd

keactrl is a script that was developed to assist in managing Kea processes. However, all modern operating systems
have their own process-management scripts, such as systemd. In general, these native scripts should be used, as they
have several advantages. systemd scripts handle processes in a uniform way, so Kea is handled in a similar fashion to
HTTP or a mail server. Second and more importantly, systemd allows dependencies to be defined between services.
For example, it is easy to specify that the Kea server should not start until the network interfaces are operational. Using
native scripts also has other benefits, such as the ability to enable or disable services using commands, and the ability
to temporarily start a disabled service.

Thus, it is recommended to use systemctl commands if they are available. Native Kea packages do not provide
keactrl; systemctl service definitions are provided instead. Consult the system documentation for details.

Briefly, here are example commands to check status, start, stop, and restart various Kea daemons:

systemctl status kea-ctrl-agent
systemctl start kea-dhcp4
systemctl stop kea-dhcp6
systemctl restart kea-dhcp-ddns

H o W W

Note that the service names may be slightly different between Linux distributions; in general, we have followed the
naming conventions in third-party packages. In particular, some systems may not have the isc- prefix.

48 Chapter 6. Managing Kea with keactrl

CHAPTER
SEVEN

THE KEA CONTROL AGENT

7.1 Overview of the Kea Control Agent

The Kea Control Agent (CA) is a daemon which exposes a RESTful control interface for managing Kea servers. The
daemon can receive control commands over HTTP and either forward these commands to the respective Kea servers
or handle these commands on its own. The determination whether the command should be handled by the CA or
forwarded is made by checking the value of the service parameter, which may be included in the command from the
controlling client. The details of the supported commands, as well as their structures, are provided in Management
API.

The CA can use hook libraries to provide support for additional commands or to program custom behavior of existing
commands. Such hook libraries must implement callouts for the control_command_receive hook point. Details
about creating new hook libraries and supported hook points can be found in the Kea Developer's Guide.

The CA processes received commands according to the following algorithm:

* Pass command into any installed hooks (regardless of service value(s)). If the command is handled by a hook,
return the response.

« If the service specifies one or more services, forward the command to the specified services and return the
accumulated responses.

* If the service is not specified or is an empty list, handle the command if the CA supports it.

7.2 Configuration

The following example demonstrates the basic CA configuration.

{
"Control-agent": {
"http-host": "10.20.30.40",
"http-port": 8000,
"trust-anchor": "/path/to/the/ca-cert.pem",
"cert-file": "/path/to/the/agent-cert.pem",
"key-file": "/path/to/the/agent-key.pem",
"cert-required": true,
"authentication": {
"type": "basic",
"realm": "kea-control-agent",
"clients": [
{

(continues on next page)

49

https://reports.kea.isc.org/dev_guide/

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"user": "admin",
"password": "1234"
1
i
"control-sockets": {
"dhcp4": {
"comment": "main server",

"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-v4"

e
"dhcp6": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-v6",
"user-context": { "version": 3 }
e
"d2": {
"socket-type": "unix",
"socket-name": "/path/to/the/unix/socket-d2"
}
g
"hooks-libraries": [
{
"library": "/opt/local/control-agent-commands.so",
"parameters": {
"paraml": "foo"
}
1,
"loggers": [{
"name": "kea-ctrl-agent",
"severity": "INFO"
1]

The http-host and http-port parameters specify an IP address and port to which HTTP service will be bound. In
the example configuration provided above, the RESTful service will be available at the URL https://10.20.30.
40:8000/. If these parameters are not specified, the default URL is http://127.0.0.1:8000/.

When using Kea's HA hook library with multi-threading, the address:port combination used for CA must be different
from the HA peer URLs, which are strictly for internal HA traffic between the peers. User commands should still be
sent via the CA.

The trust-anchor, cert-file, key-file, and cert-required parameters specify the TLS setup for HTTP,
i.e. HTTPS. If these parameters are not specified, HTTP is used. The TLS/HTTPS support in Kea is described in
TLS/HTTPS Support.

As mentioned in Overview of the Kea Control Agent, the CA can forward received commands to the Kea servers for
processing. For example, config-get is sent to retrieve the configuration of one of the Kea services. When the CA
receives this command, including a service parameter indicating that the client wishes to retrieve the configuration
of the DHCPv4 server, the CA forwards the command to that server and passes the received response back to the client.
More about the service parameter and the general structure of commands can be found in Management API.

50 Chapter 7. The Kea Control Agent

Kea Administrator Reference Manual Documentation, Release 2.4.0

The CA uses UNIX domain sockets to forward control commands and receive responses from other Kea services. The
dhcp4, dhcp6, and d2 maps specify the files to which UNIX domain sockets are bound. In the configuration above, the
CA connects to the DHCPv4 server via /path/to/the/unix/socket-v4 to forward the commands to it. Obviously,
the DHCPv4 server must be configured to listen to connections via this same socket. In other words, the command-
socket configuration for the DHCPv4 server and the CA (for that server) must match. Consult Management API for the
DHCPv4 Server, Management API for the DHCPv6 Server, and Management API for the D2 Server to learn how the
socket configuration is specified for the DHCPv4, DHCPv6, and D2 services.

User contexts can store arbitrary data as long as they are in valid JSON syntax and their top-level element is a map (i.e.
the data must be enclosed in curly brackets). Some hook libraries may expect specific formatting; please consult the
relevant hook library documentation for details.

User contexts can be specified on either global scope, control socket, basic authentication, or loggers. One other useful
feature is the ability to store comments or descriptions; the parser translates a "comment" entry into a user context with
the entry, which allows a comment to be attached within the configuration itself.

Basic HTTP authentication protects against unauthorized uses of the control agent by local users. For protection against
remote attackers, HTTPS and reverse proxy of Secure Connections provide stronger security.

The authentication is described in the authentication block with the mandatory type parameter, which selects the
authentication. Currently only the basic HTTP authentication (type basic) is supported.

The realm authentication parameter is used for error messages when the basic HTTP authentication is required but the
client is not authorized.

When the clients authentication list is configured and not empty, basic HTTP authentication is required. Each element
of the list specifies a user ID and a password. The user ID is mandatory, must be not empty, and must not contain the
colon (:) character. The password is optional; when it is not specified an empty password is used.

Note: The basic HTTP authentication user ID and password are encoded in UTF-8, but the current Kea JSON syntax
only supports the Latin-1 (i.e. 0x00..0xff) Unicode subset.

To avoid exposing the user ID and/or the associated password, these values can be read from files. The syntax is
extended by:

* The directory authentication parameter, which handles the common part of file paths. The default value is the
empty string.
* The password-file client parameter, which, alongside the directory parameter, specifies the path of a file

that can contain the password, or when no user ID is given, the whole basic HTTP authentication secret.

* The user-file client parameter, which, with the directory parameter, specifies the path of a file where the
user ID can be read.

When files are used, they are read when the configuration is loaded, to detect configuration errors as soon as possible.

Hook libraries can be loaded by kea-ctrl-agent in the same way as they are loaded by kea-dhcp4 and kea-dhcp6.
The CA currently supports one hook point - control_command_receive - which makes it possible to delegate the
processing of some commands to the hook library. The hooks-1ibraries list contains the list of hook libraries that
should be loaded by kea-ctrl-agent, along with their configuration information specified with parameters.

Please consult Logging for the details on how to configure logging. The CA's root logger's name is kea-ctrl-agent,
as given in the example above.

7.2. Configuration 51

Kea Administrator Reference Manual Documentation, Release 2.4.0

7.3 Secure Connections

The Kea Control Agent natively supports secure HTTP connections using TLS. This allows protection against users
from the node where the agent runs, something that a reverse proxy cannot provide. More about TLS/HTTPS support
in Kea can be found in TLS/HTTPS Support.

TLS is configured using three string parameters with file names, and a boolean parameter:
* The trust-anchor specifies the Certification Authority file name or directory path.
* The cert-file specifies the server certificate file name.
* The key-file specifies the private key file name. The file must not be encrypted.

* The cert-required specifies whether client certificates are required or optional. The default is to require them
and to perform mutual authentication.

The file format is PEM. Either all the string parameters are specified and HTTP over TLS (HTTPS) is used, or none is
specified and plain HTTP is used. Configuring only one or two string parameters results in an error.

Note: When client certificates are not required, only the server side is authenticated, i.e. the communication is
encrypted with an unknown client. This protects only against passive attacks; active attacks, such as "man-in-the-
middle," are still possible.

Note: No standard HTTP authentication scheme cryptographically binds its end entity with TLS. This means that
the TLS client and server can be mutually authenticated, but there is no proof they are the same as for the HTTP
authentication.

The kea-shell tool also supports TLS.

7.4 Starting and Stopping the Control Agent

kea-ctrl-agent accepts the following command-line switches:
e -c file - specifies the configuration file.

» -d - specifies whether the agent logging should be switched to debug/verbose mode. In verbose mode, the logging
severity and debuglevel specified in the configuration file are ignored and "debug" severity and the maximum
debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum verbosity,
e.g. when debugging.

e -t file - specifies the configuration file to be tested. kea-netconf attempts to load it and conducts sanity
checks; certain checks are possible only while running the actual server. The actual status is reported with exit
code (0 = configuration appears valid, 1 = error encountered). Kea prints out log messages to standard output
and error to standard error when testing the configuration.

e -v - displays the version of kea-ctrl-agent and exits.

e -V - displays the extended version information for kea-ctrl-agent and exits. The listing includes the versions
of the libraries dynamically linked to Kea.

» - - displays the Kea configuration report and exits. The report is a copy of the config.report file produced
by ./configure; it is embedded in the executable binary.

The contents of the config.report file may also be accessed by examining certain libraries in the installation
tree or in the source tree.

52 Chapter 7. The Kea Control Agent

Kea Administrator Reference Manual Documentation, Release 2.4.0

from installation using libkea-process.so
$ strings prefix}/lib/libkea-process.so | sed -n 's/;;;; //p'

from sources using libkea-process.so
$ strings src/lib/process/.libs/libkea-process.so | sed -n 's/;;;; //p'

from sources using libkea-process.a
$ strings src/lib/process/.libs/libkea-process.a | sed -n 's/;;;; //p'

from sources using libcfgrpt.a
$ strings src/lib/process/cfgrpt/.libs/libcfgrpt.a | sed -n 's/;;;; //p'

The CA is started by running its binary and specifying the configuration file it should use. For example:

[$./kea-ctrl-agent -c /usr/local/etc/kea/kea-ctrl-agent.conf

It can be started by keactrl as well (see Managing Kea with keactrl).

7.5 Connecting to the Control Agent

For an example of a tool that can take advantage of the RESTful API, see The Kea Shell.

7.5. Connecting to the Control Agent 53

Kea Administrator Reference Manual Documentation, Release 2.4.0

54 Chapter 7. The Kea Control Agent

CHAPTER
EIGHT

8.1

THE DHCPV4 SERVER

Starting and Stopping the DHCPv4 Server

It is recommended that the Kea DHCPv4 server be started and stopped using keactrl (described in Managing Kea
with keactrl); however, it is also possible to run the server directly via the kea-dhcp4 command, which accepts the
following command-line switches:

-c file - specifies the configuration file. This is the only mandatory switch.

-d - specifies whether the server logging should be switched to debug/verbose mode. In verbose mode, the
logging severity and debuglevel specified in the configuration file are ignored; "debug" severity and the maximum
debuglevel (99) are assumed. The flag is convenient for temporarily switching the server into maximum verbosity,
e.g. when debugging.

-p server-port - specifies the local UDP port on which the server listens. This is only useful during testing, as
a DHCPv4 server listening on ports other than the standard ones is not able to handle regular DHCPv4 queries.

-P client-port - specifies the remote UDP port to which the server sends all responses. This is only useful
during testing, as a DHCPv4 server sending responses to ports other than the standard ones is not able to handle
regular DHCPv4 queries.

-t file - specifies a configuration file to be tested. kea-dhcp4 loads it, checks it, and exits. During the test, log
messages are printed to standard output and error messages to standard error. The result of the test is reported
through the exit code (0 = configuration looks OK, 1 = error encountered). The check is not comprehensive;
certain checks are possible only when running the server.

-T file - specifies a configuration file to be tested. kea-dhcp4 loads it, checks it, and exits. It performs extra
checks beyond what -t offers, such as establishing database connections (for the lease backend, host reservations
backend, configuration backend, and forensic logging backend), loading hook libraries, parsing hook-library
configurations, etc. It does not open UNIX or TCP/UDP sockets, nor does it open or rotate files, as any of these
actions could interfere with a running process on the same machine.

-v - displays the Kea version and exits.

-V - displays the Kea extended version with additional parameters and exits. The listing includes the versions of
the libraries dynamically linked to Kea.

-W - displays the Kea configuration report and exits. The report is a copy of the config.report file produced
by ./configure; it is embedded in the executable binary.

The contents of the config.report file may also be accessed by examining certain libraries in the installation
tree or in the source tree.

from installation using libkea-process.so
$ strings prefix}/1lib/libkea-process.so | sed -n 's/;;;; //p'
(continues on next page)

55

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

from sources using libkea-process.so
$ strings src/lib/process/.libs/libkea-process.so | sed -n 's/;;;; //p'

from sources using libkea-process.a
$ strings src/lib/process/.libs/libkea-process.a | sed -n 's/;;;; //p'

from sources using libcfgrpt.a
$ strings src/lib/process/cfgrpt/.libs/libcfgrpt.a | sed -n 's/;;;; //p'

.

On startup, the server detects available network interfaces and attempts to open UDP sockets on all interfaces listed in
the configuration file. Since the DHCPv4 server opens privileged ports, it requires root access; this daemon must be
run as root.

During startup, the server attempts to create a PID file of the form: [runstatedir]/kea/[conf name].kea-dhcp4.
pid, where:

* runstatedir: The value as passed into the build configure script; it defaults to /usr/local/var/run. Note
that this value may be overridden at runtime by setting the environment variable KEA_PIDFILE_DIR, although
this is intended primarily for testing purposes.

* conf name: The configuration file name used to start the server, minus all preceding paths and the file extension.
For example, given a pathname of /usr/local/etc/kea/myconf. txt, the portion used would be myconf.

If the file already exists and contains the PID of a live process, the server issues a DHCP4_ALREADY_RUNNING log
message and exits. It is possible, though unlikely, that the file is a remnant of a system crash and the process to which
the PID belongs is unrelated to Kea. In such a case, it would be necessary to manually delete the PID file.

The server can be stopped using the kill command. When running in a console, the server can also be shut down by
pressing Ctrl-c. Kea detects the key combination and shuts down gracefully.

The reconfiguration of each Kea server is triggered by the SIGHUP signal. When a server receives the SIGHUP signal it
rereads its configuration file and, if the new configuration is valid, uses the new configuration. If the new configuration
proves to be invalid, the server retains its current configuration; however, in some cases a fatal error message is logged
indicating that the server is no longer providing any service: a working configuration must be loaded as soon as possible.

8.2 DHCPv4 Server Configuration

8.2.1 Introduction

This section explains how to configure the Kea DHCPv4 server using a configuration file.

Before DHCPV4 is started, its configuration file must be created. The basic configuration is as follows:

{

DHCPv4 configuration starts on the next line
"Dhcp4": {

First we set up global values
"valid-lifetime": 4000,
"renew-timer": 1000,
"rebind-timer": 2000,

Next we set up the interfaces to be used by the server.
(continues on next page)

56 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"interfaces-config": {
"interfaces": ["eth®"]

},

And we specify the type of lease database
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/var/lib/kea/dhcp4.leases"”
1

Finally, we list the subnets from which we will be leasing addresses.
"subnet4": [

{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200"
}
]
}
]
DHCPv4 configuration ends with the next line
}
3

The following paragraphs provide a brief overview of the parameters in the above example, along with their format.
Subsequent sections of this chapter go into much greater detail for these and other parameters.

The lines starting with a hash (#) are comments and are ignored by the server; they do not impact its operation in any
way.

The configuration starts in the first line with the initial opening curly bracket (or brace). Each configuration must
contain an object specifying the configuration of the Kea module using it. In the example above, this object is called
Dhcp4.

The Dhcp4 configuration starts with the "Dhcp4": { line and ends with the corresponding closing brace (in the
above example, the brace after the last comment). Everything defined between those lines is considered to be the
Dhcp4 configuration.

In general, the order in which those parameters appear does not matter, but there are two caveats. The first one is that
the configuration file must be well-formed JSON, meaning that the parameters for any given scope must be separated
by a comma, and there must not be a comma after the last parameter. When reordering a configuration file, moving
a parameter to or from the last position in a given scope may also require moving the comma. The second caveat is
that it is uncommon — although legal JSON — to repeat the same parameter multiple times. If that happens, the last
occurrence of a given parameter in a given scope is used, while all previous instances are ignored. This is unlikely to
cause any confusion as there are no real-life reasons to keep multiple copies of the same parameter in the configuration
file.

The first few DHCPv4 configuration elements define some global parameters. valid-1ifetime defines how long the
addresses (leases) given out by the server are valid; the default is for a client to be allowed to use a given address for
4000 seconds. (Note that integer numbers are specified as is, without any quotes around them.) renew-timer and
rebind-timer are values (also in seconds) that define the T1 and T2 timers that govern when the client begins the

8.2. DHCPv4 Server Configuration 57

Kea Administrator Reference Manual Documentation, Release 2.4.0

renewal and rebind processes.

Note: The lease valid lifetime is expressed as a triplet with minimum, default, and maximum values using configuration
entriesmin-valid-lifetime, valid-lifetime, and max-valid-lifetime. Since Kea 1.9.5, these values may be
specified in client classes. The procedure the server uses to select which lifetime value to use is as follows:

If the client query is a BOOTP query, the server always uses the infinite lease time (e.g. Oxffffffff). Otherwise, the
server must determine which configured triplet to use by first searching all classes assigned to the query, and then the
subnet selected for the query.

Classes are searched in the order they were assigned to the query; the server uses the triplet from the first class that
specifies it. If no classes specify the triplet, the server uses the triplet specified by the subnet selected for the client. If
the subnet does not explicitly specify it, the server next looks at the subnet's shared-network (if one exists), then for a
global specification, and finally the global default.

If the client requested a lifetime value via DHCP option 51, then the lifetime value used is the requested value bounded
by the configured triplet. In other words, if the requested lifetime is less than the configured minimum, the configured
minimum is used; if it is more than the configured maximum, the configured maximum is used. If the client did not
provide a requested value, the lifetime value used is the triplet default value.

Note: Both renew-timer and rebind-timer are optional. The server only sends rebind-timer to the client, via
DHCPv4 option code 59, if it is less than valid-1ifetime; and it only sends renew-timer, via DHCPv4 option
code 58, if it is less than rebind-timer (or valid-1lifetime if rebind-timer was not specified). In their absence,
the client should select values for T1 and T2 timers according to RFC 2131. See section Sending T1 (Option 58) and
T2 (Option 59) for more details on generating T1 and T2.

The interfaces-config map specifies the network interfaces on which the server should listen to DHCP messages.
The interfaces parameter specifies a list of network interfaces on which the server should listen. Lists are opened and
closed with square brackets, with elements separated by commas. To listen on two interfaces, the interfaces-config
element should look like this:

{
"interfaces-config": {
"interfaces": ["eth®", "ethl"]

1,
}

The next lines define the lease database, the place where the server stores its lease information. This particular example
tells the server to use memfile, which is the simplest and fastest database backend. It uses an in-memory database and
stores leases on disk in a CSV (comma-separated values) file. This is a very simple configuration example; usually the
lease database configuration is more extensive and contains additional parameters. Note that lease-database is an
object and opens up a new scope, using an opening brace. Its parameters (just one in this example: type) follow. If
there were more than one, they would be separated by commas. This scope is closed with a closing brace. As more
parameters for the Dhcp4 definition follow, a trailing comma is present.

Finally, we need to define a list of IPv4 subnets. This is the most important DHCPv4 configuration structure, as the
server uses that information to process clients' requests. It defines all subnets from which the server is expected to
receive DHCP requests. The subnets are specified with the subnet4 parameter. It is a list, so it starts and ends with
square brackets. Each subnet definition in the list has several attributes associated with it, so it is a structure and is
opened and closed with braces. At a minimum, a subnet definition must have at least two parameters: subnet, which
defines the whole subnet; and pools, which is a list of dynamically allocated pools that are governed by the DHCP
Server.

58 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.4.0

The example contains a single subnet. If more than one were defined, additional elements in the subnet4 parameter
would be specified and separated by commas. For example, to define three subnets, the following syntax would be
used:

{
"subnet4": [
{
"id": 1,
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1],
"subnet": "192.0.2.0/24"
1
{
"id": 2,
"pools": [{ "pool": "192.0.3.100 - 192.0.3.200" } 1],
"subnet": "192.0.3.0/24"
3
{
"id": 3,
"pools": [{ "pool": "192.0.4.1 - 192.0.4.254" } 1,
"subnet": "192.0.4.0/24"
}
1,
}

Note that indentation is optional and is used for aesthetic purposes only. In some cases it may be preferable to use more
compact notation.

After all the parameters have been specified, there are two contexts open: global and Dhcp4; thus, two closing curly
brackets must be used to close them.

8.2.2 Lease Storage

All leases issued by the server are stored in the lease database. There are three database backends available: memfile
(the default), MySQL, PostgreSQL.

8.2.2.1 Memfile - Basic Storage for Leases

The server is able to store lease data in different repositories. Larger deployments may elect to store leases in a database;
Lease Database Configuration describes this option. In typical smaller deployments, though, the server stores lease
information in a CSV file rather than a database. As well as requiring less administration, an advantage of using a file
for storage is that it eliminates a dependency on third-party database software.

The configuration of the memfile backend is controlled through the Dhcp4/lease-database parameters. The type
parameter is mandatory and specifies which storage for leases the server should use, through the "memfile" value.
The following list gives additional optional parameters that can be used to configure the memfile backend.

* persist: controls whether the new leases and updates to existing leases are written to the file. It is strongly
recommended that the value of this parameter be set to true at all times during the server's normal operation.
Not writing leases to disk means that if a server is restarted (e.g. after a power failure), it will not know which
addresses have been assigned. As a result, it may assign new clients addresses that are already in use. The value
of false is mostly useful for performance-testing purposes. The default value of the persist parameter is
true, which enables writing lease updates to the lease file.

8.2. DHCPv4 Server Configuration 59

Kea Administrator Reference Manual Documentation, Release 2.4.0

* name: specifies an absolute location of the lease file in which new leases and lease updates are recorded. The
default value for this parameter is " [kea-install-dir]/var/lib/kea/kea-leases4.csv".

* 1fc-interval: specifies the interval, in seconds, at which the server will perform a lease file cleanup (LFC).
This removes redundant (historical) information from the lease file and effectively reduces the lease file size.
The cleanup process is described in more detail later in this section. The default value of the 1fc-interval is
3600. A value of 0 disables the LFC.

* max-row-errors: specifies the number of row errors before the server stops attempting to load a lease file.
When the server loads a lease file, it is processed row by row, each row containing a single lease. If a row
is flawed and cannot be processed correctly the server logs it, discards the row, and goes on to the next row.
This parameter can be used to set a limit on the number of such discards that can occur, after which the server
abandons the effort and exits. The default value of ® disables the limit and allows the server to process the entire
file, regardless of how many rows are discarded.

An example configuration of the memfile backend is presented below:

"Dhcp4d": {
"lease-database": {
"type": "memfile",
"persist": true,
"name": "/tmp/kea-leases4.csv",
"lfc-interval": 1800,
"max-row-errors": 100

This configuration selects /tmp/kea-leases4.csv as the storage for lease information and enables persistence (writ-
ing lease updates to this file). It also configures the backend to perform a periodic cleanup of the lease file every 1800
seconds (30 minutes) and sets the maximum number of row errors to 100.

8.2.2.2 Why Is Lease File Cleanup Necessary?

It is important to know how the lease file contents are organized to understand why the periodic lease file cleanup is
needed. Every time the server updates a lease or creates a new lease for a client, the new lease information must be
recorded in the lease file. For performance reasons, the server does not update the existing client's lease in the file, as
this would potentially require rewriting the entire file. Instead, it simply appends the new lease information to the end
of the file; the previous lease entries for the client are not removed. When the server loads leases from the lease file,
e.g. at server startup, it assumes that the latest lease entry for the client is the valid one. Previous entries are discarded,
meaning that the server can reconstruct accurate information about the leases even though there may be many lease
entries for each client. However, storing many entries for each client results in a bloated lease file and impairs the
performance of the server's startup and reconfiguration, as it needs to process a larger number of lease entries.

Lease file cleanup (LFC) removes all previous entries for each client and leaves only the latest ones. The interval at
which the cleanup is performed is configurable, and it should be selected according to the frequency of lease renewals
initiated by the clients. The more frequent the renewals, the smaller the value of 1fc-interval should be. Note,
however, that the LFC takes time and thus it is possible (although unlikely) that, if the 1fc-interval is too short, a
new cleanup may be started while the previous one is still running. The server would recover from this by skipping
the new cleanup when it detected that the previous cleanup was still in progress, but it implies that the actual cleanups
will be triggered more rarely than the configured interval. Moreover, triggering a new cleanup adds overhead to the
server, which is not able to respond to new requests for a short period of time when the new cleanup process is spawned.
Therefore, it is recommended that the 1fc-interval value be selected in a way that allows the LFC to complete the
cleanup before a new cleanup is triggered.

Lease file cleanup is performed by a separate process (in the background) to avoid a performance impact on the server
process. To avoid conflicts between two processes using the same lease files, the LFC process starts with Kea opening

60 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

a new lease file; the actual LFC process operates on the lease file that is no longer used by the server. There are also
other files created as a side effect of the lease file cleanup. The detailed description of the LFC process is located later
in this Kea Administrator's Reference Manual: The LFC Process.

8.2.2.3 Lease Database Configuration

Note: Lease database access information must be configured for the DHCPv4 server, even if it has already been
configured for the DHCPvVG6 server. The servers store their information independently, so each server can use a separate
database or both servers can use the same database.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

Lease database configuration is controlled through the Dhcp4/lease-database parameters. The database type must
be set to memfile, mysql or postgresql, e.g.:

["Dhcp4": { "lease-database": { "type": "mysql", ... }, ... }]

Next, the name of the database to hold the leases must be set; this is the name used when the database was created (see
First-Time Creation of the MySQL Database or First-Time Creation of the PostgreSQL Database).

For MySQL or PostgreSQL.:

["Dhcp4": { "lease-database": { "name": "database-name" , ... }, ... }]

If the database is located on a different system from the DHCPv4 server, the database host name must also be specified:

["Dhcp4": { "lease-database": { "host": "remote-host-name", ... }, ... }]

Normally, the database is on the same machine as the DHCPv4 server. In this case, set the value to the empty string:

["Dhcp4": { "lease-database": { "host" : "", ... }, ... }]

Should the database use a port other than the default, it may be specified as well:

["Dhcp4": { "lease-database": { "port" : 12345, ... }, ... } J

Should the database be located on a different system, the administrator may need to specify a longer interval for the
connection timeout:

["Dhcp4": { "lease-database": { "connect-timeout" : timeout-in-seconds, ... }, ... }]

The default value of five seconds should be more than adequate for local connections. If a timeout is given, though, it
should be an integer greater than zero.

The maximum number of times the server automatically attempts to reconnect to the lease database after connectivity
has been lost may be specified:

["Dhcp4": { "lease-database": { "max-reconnect-tries" : number-of-tries, ... }, ... } J

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of 0 (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

8.2. DHCPv4 Server Configuration 61

Kea Administrator Reference Manual Documentation, Release 2.4.0

The number of milliseconds the server waits between attempts to reconnect to the lease database after connectivity has
been lost may also be specified:

-}

"'Dhcp4": { "lease-database": { "reconnect-wait-time" : number-of-milliseconds, ... },

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity.

["Dhcp4": { "lease-database": { "on-fail" : "stop-retry-exit", ... }, ... }

The possible values are:

* stop-retry-exit - disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries. This is the default value for MySQL and
PostgreSQL.

e serve-retry-exit - continues the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue - continues the DHCP service and does not shut down the server even if the recovery
fails.

Note: Automatic reconnection to database backends is configured individually per backend; this allows users to tailor
the recovery parameters to each backend they use. We suggest that users enable it either for all backends or none, so
behavior is consistent.

Losing connectivity to a backend for which reconnection is disabled results (if configured) in the server shutting itself
down. This includes cases when the lease database backend and the hosts database backend are connected to the same
database instance.

It is highly recommended not to change the stop-retry-exit default setting for the lease manager, as it is critical
for the connection to be active while processing DHCP traffic. Change this only if the server is used exclusively as a
configuration tool.

The host parameter is used by the MySQL and PostgreSQL backends.

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp4": {
"lease-database": {
"user": "user-name",
"password": "password",
Fo
}

If there is no password to the account, set the password to the empty string "". (This is the default.)

62 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.2.2.4 Tuning Database Timeouts

In rare cases, reading or writing to the database may hang. This can be caused by a temporary network issue, or by mis-
configuration of the proxy server switching the connection between different database instances. These situations are
rare, but users have reported that Kea sometimes hangs while performing database IO operations. Setting appropriate
timeout values can mitigate such issues.

MySQL exposes two distinct connection options to configure the read and write timeouts. Kea's corresponding
read-timeout and write-timeout configuration parameters specify the timeouts in seconds. For example:

[”Dhcp4": { "lease-database": { "read-timeout" : 10, "write-timeout": 20, ... }, ... }]

Setting these parameters to 0 is equivalent to not specifying them, and causes the Kea server to establish a connection
to the database with the MySQL defaults. In this case, Kea waits indefinitely for the completion of the read and write
operations.

MySQL versions earlier than 5.6 do not support setting timeouts for read and write operations. Moreover, the
read-timeout and write-timeout parameters can only be specified for the MySQL backend; setting them for any
other backend database type causes a configuration error.

To set a timeout in seconds for PostgreSQL, use the tcp-user-timeout parameter. For example:

["Dhcp4": { "lease-database": { "tcp-user-timeout" : 10, ... }, ... }]

Specifying this parameter for other backend types causes a configuration error.

Note: The timeouts described here are only effective for TCP connections. Please note that the MySQL client library
used by the Kea servers typically connects to the database via a UNIX domain socket when the host parameter is
localhost, but establishes a TCP connection for 127.0.0. 1.

8.2.3 Hosts Storage

Kea is also able to store information about host reservations in the database. The hosts database configuration uses the
same syntax as the lease database. In fact, the Kea server opens independent connections for each purpose, be it lease
or hosts information, which gives the most flexibility. Kea can keep leases and host reservations separately, but can
also point to the same database. Currently the supported hosts database types are MySQL and PostgreSQL.

The following configuration can be used to configure a connection to MySQL.:

"Dhcp4": {
"hosts-database": {
"type": "mysql",

"name": "kea",

"user": "kea",
"password": "secretl23",
"host": "localhost",
"port": 3306

Depending on the database configuration, many of the parameters may be optional.

Please note that usage of hosts storage is optional. A user can define all host reservations in the configuration file, and
that is the recommended way if the number of reservations is small. However, when the number of reservations grows,
it is more convenient to use host storage. Please note that both storage methods (the configuration file and one of the

8.2. DHCPv4 Server Configuration 63

Kea Administrator Reference Manual Documentation, Release 2.4.0

supported databases) can be used together. If hosts are defined in both places, the definitions from the configuration
file are checked first and external storage is checked later, if necessary.

Host information can be placed in multiple stores. Operations are performed on the stores in the order they are defined in
the configuration file, although this leads to a restriction in ordering in the case of a host reservation addition; read-only
stores must be configured after a (required) read-write store, or the addition will fail.

Note: Kea requires the database timezone to match the system timezone. For more details, see First-Time Creation of
the MySQL Database and First-Time Creation of the PostgreSQL Database.

8.2.3.1 DHCPv4 Hosts Database Configuration

Hosts database configuration is controlled through the Dhcp4/hosts-database parameters. If enabled, the type of
database must be set to mysql or postgresql.

["Dhcp4": { "hosts-database": { "type": "mysql", ... }, ... }]

Next, the name of the database to hold the reservations must be set; this is the name used when the lease database was
created (see Supported Backends for instructions on how to set up the desired database type):

[”Dhcp4": { "hosts-database": { "name": "database-name" , ... }, ... } J

If the database is located on a different system than the DHCPv4 server, the database host name must also be specified:

[”Dhcp4": { "hosts-database": { "host": remote-host-name, ... }, ... }]

Normally, the database is on the same machine as the DHCPv4 server. In this case, set the value to the empty string:

["Dhcp4": { "hosts-database": { "host" : "", ... }, ... }]

Should the database use a port different than the default, it may be specified as well:

["Dhcp4": { "hosts-database": { "port" : 12345, ... }, ... } J

The maximum number of times the server automatically attempts to reconnect to the host database after connectivity
has been lost may be specified:

["Dhcp4": { "hosts-database": { "max-reconnect-tries" : number-of-tries, ... }, ... } }

If the server is unable to reconnect to the database after making the maximum number of attempts, the server will exit.
A value of 0 (the default) disables automatic recovery and the server will exit immediately upon detecting a loss of
connectivity (MySQL and PostgreSQL only).

The number of milliseconds the server waits between attempts to reconnect to the host database after connectivity has
been lost may also be specified:

-}

"Dhcp4": { "hosts-database": { "reconnect-wait-time" : number-of-milliseconds, ... }, ... ’

The default value for MySQL and PostgreSQL is 0, which disables automatic recovery and causes the server to exit
immediately upon detecting the loss of connectivity.

["Dhcp4": { "hosts-database": { "on-fail" : "stop-retry-exit", ... }, ... } }

64 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

The possible values are:

e stop-retry-exit - disables the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries. This is the default value for MySQL and
PostgreSQL.

e serve-retry-exit - continues the DHCP service while trying to automatically recover lost connections. Shuts
down the server on failure after exhausting max-reconnect-tries.

* serve-retry-continue - continues the DHCP service and does not shut down the server even if the recovery
fails.

Note: Automatic reconnection to database backends is configured individually per backend. This allows users to tailor
the recovery parameters to each backend they use. We suggest that users enable it either for all backends or none, so
behavior is consistent.

Losing connectivity to a backend for which reconnection is disabled results (if configured) in the server shutting itself
down. This includes cases when the lease database backend and the hosts database backend are connected to the same
database instance.

Finally, the credentials of the account under which the server will access the database should be set:

"Dhcp4d": {
"hosts-database": {
"user": "user-name",
"password": "password",

},

If there is no password to the account, set the password to the empty string "". (This is the default.)

The multiple-storage extension uses a similar syntax; a configuration is placed into a hosts-databases list instead
of into a hosts-database entry, as in:

[”Dhcp4": { "hosts-databases": [{ "type": "mysql", ... 3}, ... 1, ... }]

If the same host is configured both in-file and in-database, Kea does not issue a warning, as it would if both were
specified in the same data source. Instead, the host configured in-file has priority over the one configured in-database.

8.2.3.2 Using Read-Only Databases for Host Reservations With DHCPv4

In some deployments, the user whose name is specified in the database backend configuration may not have write
privileges to the database. This is often required by the policy within a given network to secure the data from being
unintentionally modified. In many cases administrators have deployed inventory databases, which contain substantially
more information about the hosts than just the static reservations assigned to them. The inventory database can be used
to create a view of a Kea hosts database and such a view is often read-only.

Kea host-database backends operate with an implicit configuration to both read from and write to the database. If the
user does not have write access to the host database, the backend will fail to start and the server will refuse to start (or
reconfigure). However, if access to a read-only host database is required for retrieving reservations for clients and/or
assigning specific addresses and options, it is possible to explicitly configure Kea to start in "read-only" mode. This is
controlled by the readonly boolean parameter as follows:

8.2. DHCPv4 Server Configuration 65

Kea Administrator Reference Manual Documentation, Release 2.4.0

["Dhcp4": { "hosts-database": { "readonly": true, ... }, ... } J

Setting this parameter to false configures the database backend to operate in "read-write" mode, which is also the
default configuration if the parameter is not specified.

Note: The readonly parameter is only supported for MySQL and PostgreSQL databases.

8.2.3.3 Tuning Database Timeouts for Hosts Storage

See Tuning Database Timeouts.

8.2.4 Interface Configuration

The DHCPv4 server must be configured to listen on specific network interfaces. The simplest network interface con-
figuration tells the server to listen on all available interfaces:

"Dhcpd”: {
"interfaces-config": {
"interfaces": ["*"]
1
}

The asterisk plays the role of a wildcard and means "listen on all interfaces." However, it is usually a good idea to
explicitly specify interface names:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"]
Fo
}

It is possible to use an interface wildcard (*) concurrently with explicit interface names:

"Dhcp4d": {
"interfaces-config": {
"interfaces": ["ethl", "eth3", "*"]
1
}

This format should only be used when it is desired to temporarily override a list of interface names and listen on all
interfaces.

Some deployments of DHCP servers require that the servers listen on interfaces with multiple IPv4 addresses config-
ured. In these situations, the address to use can be selected by appending an IPv4 address to the interface name in the
following manner:

66 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

"Dhcpd": {
"interfaces-config": {
"interfaces": ["eth1/10.0.0.1", "eth3/192.0.2.3"]
3

Should the server be required to listen on multiple IPv4 addresses assigned to the same interface, multiple addresses
can be specified for an interface as in the example below:

"Dhcpd": {
"interfaces-config": {
"interfaces": ["eth1/10.0.0.1", "ethl1/10.0.0.2"]
1

Alternatively, if the server should listen on all addresses for the particular interface, an interface name without any
address should be specified.

Kea supports responding to directly connected clients which do not have an address configured. This requires the
server to inject the hardware address of the destination into the data-link layer of the packet being sent to the client.
The DHCPv4 server uses raw sockets to achieve this, and builds the entire IP/UDP stack for the outgoing packets. The
downside of raw socket use, however, is that incoming and outgoing packets bypass the firewalls (e.g. iptables).

Handling traffic on multiple IPv4 addresses assigned to the same interface can be a challenge, as raw sockets are bound
to the interface. When the DHCP server is configured to use the raw socket on an interface to receive DHCP traffic,
advanced packet filtering techniques (e.g. the BPF) must be used to receive unicast traffic on the desired addresses
assigned to the interface. Whether clients use the raw socket or the UDP socket depends on whether they are directly
connected (raw socket) or relayed (either raw or UDP socket).

Therefore, in deployments where the server does not need to provision the directly connected clients and only receives
the unicast packets from the relay agents, the Kea server should be configured to use UDP sockets instead of raw sockets.
The following configuration demonstrates how this can be achieved:

"Dhcp4": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"dhcp-socket-type": "udp"
3

The dhcp-socket-type parameter specifies that the IP/UDP sockets will be opened on all interfaces on which the
server listens, i.e. "ethl" and "eth3" in this example. If dhcp-socket-type is set to raw, it configures the server to
use raw sockets instead. If the dhcp-socket-type value is not specified, the default value raw is used.

Using UDP sockets automatically disables the reception of broadcast packets from directly connected clients. This
effectively means that UDP sockets can be used for relayed traffic only. When using raw sockets, both the traffic from
the directly connected clients and the relayed traffic are handled.

Caution should be taken when configuring the server to open multiple raw sockets on the interface with several IPv4
addresses assigned. If the directly connected client sends the message to the broadcast address, all sockets on this link
will receive this message and multiple responses will be sent to the client. Therefore, the configuration with multiple
IPv4 addresses assigned to the interface should not be used when the directly connected clients are operating on that
link. To use a single address on such an interface, the "interface-name/address" notation should be used.

8.2. DHCPv4 Server Configuration 67

Kea Administrator Reference Manual Documentation, Release 2.4.0

Note: Specifying the value raw as the socket type does not guarantee that raw sockets will be used! The use of raw
sockets to handle traffic from the directly connected clients is currently supported on Linux and BSD systems only. If
raw sockets are not supported on the particular OS in use, the server issues a warning and fall back to using IP/UDP
sockets.

In a typical environment, the DHCP server is expected to send back a response on the same network interface on which
the query was received. This is the default behavior. However, in some deployments it is desired that the outbound
(response) packets be sent as regular traffic and the outbound interface be determined by the routing tables. This kind
of asymmetric traffic is uncommon, but valid. Kea supports a parameter called outbound-interface that controls
this behavior. It supports two values: the first one, same-as-inbound, tells Kea to send back the response on the same
interface where the query packet was received. This is the default behavior. The second parameter, use-routing,
tells Kea to send regular UDP packets and let the kernel's routing table determine the most appropriate interface. This
only works when dhcp-socket-type is set to udp. An example configuration looks as follows:

"Dhcp4": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],
"dhcp-socket-type": "udp",
"outbound-interface": "use-routing"
1
}

Interfaces are re-detected at each reconfiguration. This behavior can be disabled by setting the re-detect value to
false, for instance:

"Dhcp4": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"re-detect": false

},

Note that interfaces are not re-detected during config-test.

Usually loopback interfaces (e.g. the 1o or 100 interface) are not configured, but if a loopback interface is explicitly
configured and IP/UDP sockets are specified, the loopback interface is accepted.

For example, this setup can be used to run Kea in a FreeBSD jail having only a loopback interface, to service a relayed
DHCP request:

"Dhcp4": {

"interfaces-config": {
"interfaces": ["lo®"],
"dhcp-socket-type": "udp"

1

Kea binds the service sockets for each interface on startup. If another process is already using a port, then Kea logs the
message and suppresses an error. DHCP service runs, but it is unavailable on some interfaces.

The "service-sockets-require-all" option makes Kea require all sockets to be successfully bound. If any opening fails,
Kea interrupts the initialization and exits with a non-zero status. (Default is false).

68 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

"Dhcpd": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"service-sockets-require-all": true

}1

Sometimes, immediate interruption isn't a good choice. The port can be unavailable only temporary. In
this case, retrying the opening may resolve the problem. Kea provides two options to specify the retrying:
service-sockets-max-retries and service-sockets-retry-wait-time.

The first defines a maximal number of retries that Kea makes to open a socket. The zero value (default) means that the
Kea doesn't retry the process.

The second defines a wait time (in milliseconds) between attempts. The default value is 5000 (5 seconds).

"Dhcp4": {
"interfaces-config": {
"interfaces": ["ethl", "eth3"],

"service-sockets-max-retries": 5,
"service-sockets-retry-wait-time": 5000

},

If "service-sockets-max-retries" is non-zero and "service-sockets-require-all" is false, then Kea retries the opening (if
needed) but does not fail if any socket is still not opened.

8.2.5 Issues With Unicast Responses to DHCPINFORM

The use of UDP sockets has certain benefits in deployments where the server receives only relayed traffic; these benefits
are mentioned in Interface Configuration. From the administrator's perspective it is often desirable to configure the
system's firewall to filter out unwanted traffic, and the use of UDP sockets facilitates this. However, the administrator
must also be aware of the implications related to filtering certain types of traffic, as it may impair the DHCP server's
operation.

In this section we focus on the case when the server receives the DHCPINFORM message from the client via a relay.
According to RFC 2131, the server should unicast the DHCPACK response to the address carried in the ciaddr field.
When the UDP socket is in use, the DHCP server relies on the low-level functions of an operating system to build the
data link, IP, and UDP layers of the outgoing message. Typically, the OS first uses ARP to obtain the client's link-layer
address to be inserted into the frame's header, if the address is not cached from a previous transaction that the client
had with the server. When the ARP exchange is successful, the DHCP message can be unicast to the client, using the
obtained address.

Some system administrators block ARP messages in their network, which causes issues for the server when it responds
to the DHCPINFORM messages because the server is unable to send the DHCPACK if the preceding ARP communi-
cation fails. Since the OS is entirely responsible for the ARP communication and then sending the DHCP packet over
the wire, the DHCP server has no means to determine that the ARP exchange failed and the DHCP response message
was dropped. Thus, the server does not log any error messages when the outgoing DHCP response is dropped. At the
same time, all hooks pertaining to the packet-sending operation will be called, even though the message never reaches
its destination.

Note that the issue described in this section is not observed when raw sockets are in use, because, in this case, the
DHCP server builds all the layers of the outgoing message on its own and does not use ARP. Instead, it inserts the value

8.2. DHCPv4 Server Configuration 69

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.4.0

carried in the chaddr field of the DHCPINFORM message into the link layer.

Server administrators willing to support DHCPINFORM messages via relays should not block ARP traffic in their
networks, or should use raw sockets instead of UDP sockets.

8.2.6 IPv4 Subnet Identifier

The subnet identifier (subnet ID) is a unique number associated with a particular subnet. In principle, it is used to asso-
ciate clients' leases with their respective subnets. The server configuration should contain unique and stable identifiers
for all subnets. When a subnet identifier is not specified for a subnet, it is automatically assigned by the configuration
mechanism. The identifiers are assigned starting at 1 and are monotonically increased for each subsequent subnet: 1,
2,3, ...

If there are multiple subnets configured with auto-generated identifiers and one of them is removed, the subnet identifiers
may be renumbered. For example: if there are four subnets and the third is removed, the last subnet will be assigned
the identifier that the third subnet had before removal. As a result, the leases stored in the lease database for subnet
3 are now associated with subnet 4, something that may have unexpected consequences. It is one of the reasons why
auto-generated subnet identifiers are deprecated starting from Kea version 2.4.0.

Note: The auto-generation of the subnet identifiers will be removed in a future release. Starting from Kea 2.4.0, a
subnet without an id entry or with the zero value raises a warning at the configuration time.

Note: Subnet IDs must be greater than zero and less than 4294967295.

The following configuration assigns the specified subnet identifier to a newly configured subnet:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"id": 1024,
}
]
}

This identifier will not change for this subnet unless the id parameter is removed or set to 0. The value of 0 forces
auto-generation of the subnet identifier.

8.2.7 IPv4 Subnet Prefix

The subnet prefix is the second way to identify a subnet. Kea can accept non-canonical subnet addresses; for instance,
this configuration is accepted:

"Dhcp4d": {
"subnet4": [
{
"subnet": "192.0.2.1/24",
}

(continues on next page)

70 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

¥

This works even if there is another subnet with the "192.0.2.0/24" prefix; only the textual form of subnets are compared
to avoid duplicates.

Note: Abuse of this feature can lead to incorrect subnet selection (see How the DHCPv4 Server Selects a Subnet for
the Client).

8.2.8 Configuration of IPv4 Address Pools

The main role of a DHCPv4 server is address assignment. For this, the server must be configured with at least one
subnet and one pool of dynamic addresses to be managed. For example, assume that the server is connected to a
network segment that uses the 192.0.2.0/24 prefix. The administrator of that network decides that addresses from the
range 192.0.2.10 to 192.0.2.20 are going to be managed by the DHCPv4 server. Such a configuration can be achieved
in the following way:

"Dhcpd": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10 - 192.0.2.20" }
Ae
}
]
}

Note that subnet is defined as a simple string, but the pools parameter is actually a list of pools; for this reason, the
pool definition is enclosed in square brackets, even though only one range of addresses is specified.

Each pool is a structure that contains the parameters that describe a single pool. Currently there is only one parameter,
pool, which gives the range of addresses in the pool.

It is possible to define more than one pool in a subnet; continuing the previous example, further assume that
192.0.2.64/26 should also be managed by the server. It could be written as 192.0.2.64 to 192.0.2.127, or it can be
expressed more simply as 192.0.2.64/26. Both formats are supported by Dhcp4 and can be mixed in the pool list. For
example, the following pools could be defined:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [
{ "pool": "192.0.2.10-192.0.2.20" },
{ "pool": "192.0.2.64/26" }
i
}
1,

(continues on next page)

8.2. DHCPv4 Server Configuration 71

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

¥

White space in pool definitions is ignored, so spaces before and after the hyphen are optional. They can be used to
improve readability.

The number of pools is not limited, but for performance reasons it is recommended to use as few as possible.

The server may be configured to serve more than one subnet. To add a second subnet, use a command similar to the
following:

"Dhcp4": {
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
B
{
"subnet": "192.0.3.0/24",
"pools": [{ "pool": "192.0.3.100 - 192.0.3.200" } 1,
B
{
"subnet": "192.0.4.0/24",
"pools": [{ "pool": "192.0.4.1 - 192.0.4.254" }],
}
]
}

When configuring a DHCPv4 server using prefix/length notation, please pay attention to the boundary values. When
specifying that the server can use a given pool, it is also able to allocate the first (typically a network address) and the
last (typically a broadcast address) address from that pool. In the aforementioned example of pool 192.0.3.0/24, both
the 192.0.3.0 and 192.0.3.255 addresses may be assigned as well. This may be invalid in some network configurations.
To avoid this, use the min-max notation.

In a subnet whose prefix length is less than 24, users may wish to exclude all addresses ending in .0 and .255 from
being dynamically allocated. For instance, in the subnet 10.0.0.0/8, an administrator may wish to exclude 10.x.y.0 and
10.x.y.255 for all values of x and y, even though only 10.0.0.0 and 10.255.255.255 must be excluded according to RFC
standards. The exclude-first-last-24 configuration compatibility flag (Kea DHCPv4 Compatibility Configura-
tion Parameters) does this automatically, rather than requiring explicit configuration of many pools or reservations for
fake hosts. When true, it applies only to subnets of 24 prefix length or smaller i.e. larger address space; the default is
false.

In this case, "exclude" means to skip these addresses in the free address pickup routine of the allocation engine; if a
client explicitly requests or has a host reservation for an address in .0 or .255, it will get it.

Note: Here are some liberties and limits to the values that subnets and pools can take in unusual Kea configurations:

72 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

Kea Al- Comment
config- lowe:

uration

case

Over- Yes Administrator should consider how clients are matched to these subnets.

lapping

subnets

Over- No Startup error: DHCP4_PARSER_FAIL

lapping

pools

in one

subnet

Over- Yes Specifying the same address pool in different subnets can be used as an equivalent of the global
lapping address pool. In that case, the server can assign addresses from the same range regardless of the
address client's subnet. If an address from such a pool is assigned to a client in one subnet, the same
pools in address will be renewed for this client if it moves to another subnet. Another client in a different
different subnet will not be assigned an address already assigned to the client in any of the subnets.
subnets

Pools not No Startup error: DHCP4_PARSER_FAIL

match-

ing the

subnet

prefix

8.2.9 Sending T1 (Option 58) and T2 (Option 59)

According to RFC 2131, servers should send values for T1 and T2 that are 50% and 87.5% of the lease lifetime,
respectively. By default, kea-dhcp4 does not send either value; it can be configured to send values that are either
specified explicitly or that are calculated as percentages of the lease time. The server's behavior is governed by a
combination of configuration parameters, two of which have already been mentioned. To send specific, fixed values
use the following two parameters:

e renew-timer - specifies the value of T1 in seconds.
e rebind-timer - specifies the value of T2 in seconds.

The server only sends T2 if it is less than the valid lease time. T1 is only sent if T2 is being sent and T1 is less than T2;
or T2 is not being sent and T1 is less than the valid lease time.

Calculating the values is controlled by the following three parameters.

* calculate-tee-times - when true, T1 and T2 are calculated as percentages of the valid lease time. It defaults
to false.

* tl-percent - the percentage of the valid lease time to use for T1. It is expressed as a real number between 0.0
and 1.0 and must be less than t2-percent. The default value is 0.50, per RFC 2131.

e t2-percent - the percentage of the valid lease time to use for T2. It is expressed as a real number between 0.0
and 1.0 and must be greater than t1-percent. The default value is .875, per RFC 2131.

Note: In the event that both explicit values are specified and calculate-tee-times is true, the server will use the
explicit values. Administrators with a setup where some subnets or shared-networks use explicit values and some use
calculated values must not define the explicit values at any level higher than where they will be used. Inheriting them

8.2. DHCPv4 Server Configuration 73

https://tools.ietf.org/html/rfc2131

Kea Administrator Reference Manual Documentation, Release 2.4.0

from too high a scope, such as global, will cause them to have explicit values at every level underneath (shared-networks
and subnets), effectively disabling calculated values.

8.2.10 Standard DHCPv4 Options

One of the major features of the DHCPv4 server is the ability to provide configuration options to clients. Most of
the options are sent by the server only if the client explicitly requests them using the Parameter Request List option.
Those that do not require inclusion in the Parameter Request List option are commonly used options, e.g. "Domain
Server", and options which require special behavior, e.g. "Client FQDN", which is returned to the client if the client
has included this option in its message to the server.

List of standard DHCPv4 options configurable by an administrator comprises the list of the standard DHCPv4 options
whose values can be configured using the configuration structures described in this section. This table excludes the
options which require special processing and thus cannot be configured with fixed values. The last column of the table
indicates which options can be sent by the server even when they are not requested in the Parameter Request List option,
and those which are sent only when explicitly requested.

The following example shows how to configure the addresses of DNS servers, which is one of the most frequently used
options. Options specified in this way are considered global and apply to all configured subnets.

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"code": 6,
"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.1, 192.0.2.2"
g
]
}

Note that either name or code is required; there is no need to specify both. space has a default value of dhcp4, so
this can be skipped as well if a regular (not encapsulated) DHCPv4 option is defined. Finally, csv-format defaults
to true, so it too can be skipped, unless the option value is specified as a hexadecimal string. Therefore, the above
example can be simplified to:

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2"
B
]
}

Defined options are added to the response when the client requests them, with a few exceptions which are always added.
To enforce the addition of a particular option, set the always-send flag to true as in:

"Dhcp4": {
"option-data": [
(continues on next page)

74 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always-send": true

Fg

The effect is the same as if the client added the option code in the Parameter Request List option (or its equivalent for
vendor options):

"Dhcp4d": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2",
"always-send": true
e
1,
"subnet4": [
{
"subnet": "192.0.3.0/24",
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.3.1, 192.0.3.2"
3,
1
o
1,
}

In the example above, the domain-name-servers option respects the global always-send flag and is always added
to responses, but for subnet 192.0.3.0/24, the value is taken from the subnet-level option data specification.

Contrary to always-send, if the never-send flag is set to true for a particular option, the server does not add it to
the response. The effect is the same as if the client removed the option code in the Parameter Request List option (or
its equivalent for vendor options):

"Dhcp4": {
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.1, 192.0.2.2"
e
1,

(continues on next page)

8.2. DHCPv4 Server Configuration 75

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"subnet4": [

{
"subnet": "192.0.3.0/24",
"option-data": [
{
"name": "domain-name-servers",
"never-send": true
3,
1,
Fo

In the example above, the domain-name-servers option is never added to responses on subnet 192.0.3.0/24.
never-send has precedence over always-send, so if both are true the option is not added.

Note: The always-send and never-send flags are sticky, meaning they do not follow the usual configuration
inheritance rules. Instead, if they are enabled at least once along the configuration inheritance chain, they are applied
- even if they are disabled in other places which would normally receive a higher priority. For instance, if one of the
flags is enabled in the global scope, but disabled at the subnet level, it is enabled, disregarding the subnet-level setting.

Note: The never-send flag is less powerful than 1ibdhcp_flex_option.so; for instance, it has no effect on
options managed by the server itself. Both always-send and never-send have no effect on options which cannot be
requested, for instance from a custom space.

The name parameter specifies the option name. For a list of currently supported names, see List of standard DHCPv4
options configurable by an administrator below. The code parameter specifies the option code, which must match
one of the values from that list. The next line specifies the option space, which must always be set to dhcp4 as these
are standard DHCPv4 options. For other option spaces, including custom option spaces, see Nested DHCPv4 Options
(Custom Option Spaces). The next line specifies the format in which the data will be entered; use of CSV (comma-
separated values) is recommended. The sixth line gives the actual value to be sent to clients. The data parameter is
specified as normal text, with values separated by commas if more than one value is allowed.

Options can also be configured as hexadecimal values. If csv-format is set to false, option data must be specified
as a hexadecimal string. The following commands configure the domain-name-servers option for all subnets with
the following addresses: 192.0.3.1 and 192.0.3.2. Note that csv-format is set to false.

"Dhcpd": {
"option-data": [

{
"name": "domain-name-servers",
"code": 6,
"space": "dhcp4",
"csv-format": false,
"data": "CO 00 03 01 CO 60 03 02"

B

(continues on next page)

76 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

Kea supports the following formats when specifying hexadecimal data:

non nn

* Delimited octets - one or more octets separated by either colons or spaces (":" or " "). While each octet may
contain one or two digits, we strongly recommend always using two digits. Valid examples are "ab:cd:ef" and
"ab cd ef".

* String of digits - a continuous string of hexadecimal digits with or without a "0x" prefix. Valid examples
are "Oxabcdef" and "abcdef".

Care should be taken to use proper encoding when using hexadecimal format; Kea's ability to validate data correctness
in hexadecimal is limited.

It is also possible to specify data for binary options as a single-quoted text string within double quotes as shown (note
that csv-format must be set to false):

"Dhcp4": {
"option-data": [
{
"name": "user-class",
"code": 77,
"space": "dhcp4",
"csv-format": false,
"data": "'convert this text to binary'"
B
1,

Most of the parameters in the option-data structure are optional and can be omitted in some circumstances, as
discussed in Unspecified Parameters for DHCPv4 Option Configuration.

It is possible to specify or override options on a per-subnet basis. If clients connected to most subnets are expected to
get the same values of a given option, administrators should use global options. On the other hand, if different values
are used in each subnet, it does not make sense to specify global option values; rather, only subnet-specific ones should
be set.

The following commands override the global DNS servers option for a particular subnet, setting a single DNS server
with address 192.0.2.3:

"Dhcpd": {
"subnet4": [
{
"option-data": [
{
"name": "domain-name-servers",
"code": 6,

"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.3"

(continues on next page)

8.2. DHCPv4 Server Configuration 77

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

In some cases it is useful to associate some options with an address pool from which a client is assigned a lease. Pool-
specific option values override subnet-specific and global option values; it is not possible to prioritize assignment of
pool-specific options via the order of pool declarations in the server configuration.

The following configuration snippet demonstrates how to specify the DNS servers option, which is assigned to a client
only if the client obtains an address from the given pool:

"Dhcp4": {
"subnet4": [
{
"pools": [
{
"pool": "192.0.2.1 - 192.0.2.200",
"option-data": [
{
"name": "domain-name-servers",
"data": "192.0.2.3"
e
1,
L
Ig
i
]1
}

Options can also be specified in class or host-reservation scope. The current Kea options precedence order is (from
most important to least): host reservation, pool, subnet, shared network, class, global.

When a data field is a string and that string contains the comma (, ; U+002C) character, the comma must be escaped
with two backslashes (\\,; U+005C). This double escape is required because both the routine splitting of CSV data
into fields and JSON use the same escape character; a single escape (\,) would make the JSON invalid. For example,
the string "foo,bar" must be represented as:

"Dhcp4": {
"subnet4": [
{
"pools": [

(continues on next page)

78 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

{
"option-data": [
{
"name": "boot-file-name",
"data": "foo\\,bar"
}
]
e

3,

Some options are designated as arrays, which means that more than one value is allowed. For example, the option
time-servers allows the specification of more than one IPv4 address, enabling clients to obtain the addresses of
multiple NTP servers.

Custom DHCPv4 Options describes the configuration syntax to create custom option definitions (formats). Creation
of custom definitions for standard options is generally not permitted, even if the definition being created matches the
actual option format defined in the RFCs. However, there is an exception to this rule for standard options for which Kea
currently does not provide a definition. To use such options, a server administrator must create a definition as described
in Custom DHCPv4 Options in the dhcp4 option space. This definition should match the option format described in
the relevant RFC, but the configuration mechanism allows any option format as there is currently no way to validate it.

The currently supported standard DHCPv4 options are listed in the table below. "Name" and "Code" are the values that
should be used as a name/code in the option-data structures. "Type" designates the format of the data; the meanings of
the various types are given in List of standard DHCP option types.

Table 1: List of standard DHCPv4 options configurable by an

administrator

Name Code Type Array? Returned if not reques
time-offset 2 int32 false false
routers 3 ipv4-address true true
time-servers 4 ipv4-address true false
name-servers 5 ipv4-address true false
domain-name-servers 6 ipv4-address true true
log-servers 7 ipv4-address true false
cookie-servers 8 ipv4-address true false
Ipr-servers 9 ipv4-address true false
impress-servers 10 ipv4-address true false
resource-location-servers 11 ipv4-address true false
boot-size 13 uint16 false false
merit-dump 14 string false false
domain-name 15 fqdn false true
swap-server 16 ipv4-address false false
root-path 17 string false false
extensions-path 18 string false false
ip-forwarding 19 boolean false false

continues on next

8.2. DHCPv4 Server Configuration

79

Kea Administrator Reference Manual Documentation, Release 2.4.0

Table 1 - continued from previous page

Name Code Type Array? Returned if not reques
non-local-source-routing 20 boolean false false
policy-filter 21 ipv4-address true false
max-dgram-reassembly 22 uint16 false false
default-ip-ttl 23 uint8 false false
path-mtu-aging-timeout 24 uint32 false false
path-mtu-plateau-table 25 uint16 true false
interface-mtu 26 uint16 false false
all-subnets-local 27 boolean false false
broadcast-address 28 ipv4-address false false
perform-mask-discovery 29 boolean false false
mask-supplier 30 boolean false false
router-discovery 31 boolean false false
router-solicitation-address 32 ipv4-address false false
static-routes 33 ipv4-address true false
trailer-encapsulation 34 boolean false false
arp-cache-timeout 35 uint32 false false
ieee802-3-encapsulation 36 boolean false false
default-tcp-ttl 37 uint8 false false
tcp-keepalive-interval 38 uint32 false false
tcp-keepalive-garbage 39 boolean false false
nis-domain 40 string false false
nis-servers 41 ipv4-address true false
ntp-servers 42 ipv4-address true false
vendor-encapsulated-options 43 empty false false
netbios-name-servers 44 ipv4-address true false
netbios-dd-server 45 ipv4-address true false
netbios-node-type 46 uint8 false false
netbios-scope 47 string false false
font-servers 48 ipv4-address true false
x-display-manager 49 ipv4-address true false
dhcp-option-overload 52 uint8 false false
dhcp-server-identifier 54 ipv4-address false true
dhcp-message 56 string false false
dhcp-max-message-size 57 uint16 false false
vendor-class-identifier 60 string false false
nwip-domain-name 62 string false false
nwip-suboptions 63 binary false false
nisplus-domain-name 64 string false false
nisplus-servers 65 ipv4-address true false
tftp-server-name 66 string false false
boot-file-name 67 string false false
mobile-ip-home-agent 68 ipv4-address true false
smtp-server 69 ipv4-address true false
pop-server 70 ipv4-address true false
nntp-server 71 ipv4-address true false
WWW-SErver 72 ipv4-address true false
finger-server 73 ipv4-address true false
irc-server 74 ipv4-address true false
streettalk-server 75 ipv4-address true false
streettalk-directory-assistance-server 76 ipv4-address true false

continues on next

80

Chapter 8

. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

Table 1 - continued from previous page

Name Code Type Array? Returned if not reques
user-class 77 binary false false
slp-directory-agent 78 record (boolean, ipv4-address) true false
slp-service-scope 79 record (boolean, string) false false
nds-server 85 ipv4-address true false
nds-tree-name 86 string false false
nds-context 87 string false false
bcems-controller-names 88 fqdn true false
bcems-controller-address 89 ipv4-address true false
client-system 93 uint16 true false
client-ndi 94 record (uint8, uint8, uint8) false false
uuid-guid 97 record (uint8, binary) false false
uap-servers 98 string false false
geoconf-civic 99 binary false false
pcode 100 string false false
tcode 101 string false false
v6-only-preferred 108 uint32 false false
netinfo-server-address 112 ipv4-address true false
netinfo-server-tag 113 string false false
v4-captive-portal 114 string false false
auto-config 116 uint8 false false
name-service-search 117 uint16 true false
domain-search 119 fqdn true false
vivco-suboptions 124 record (uint32, binary) false false
vivso-suboptions 125 uint32 false false
pana-agent 136 ipv4-address true false
v4-lost 137 fqdn false false
capwap-ac-v4 138 ipv4-address true false
sip-ua-cs-domains 141 fqdn true false
v4-sztp-redirect 143 tuple true false
rdnss-selection 146 record (uint8, ipv4-address, ipv4-address, fqdn) true false
v4-portparams 159 record (uint8, psid) false false
v4-dnr 162 record (uintl6, uintl6, uint8, fqdn, binary) false false
option-6rd 212 record (uint8, uint8, ipv6-address, ipv4-address) true false
v4-access-domain 213 fqdn false false

Note: The default-url option was replaced with v4-captive-portal in Kea 2.1.2, as introduced by RFC 8910.
The new option has exactly the same format as the old one. The general perception is that default-url was seldom
used. If you used it and migrating, please replace default-url with v4-captive-portal and your configuration
will continue to work as before.

Kea also supports other options than those listed above; the following options are returned by the Kea engine itself and
in general should not be configured manually.

8.2. DHCPv4 Server Configuration 81

https://tools.ietf.org/html/rfc8910

Kea Administrator Reference Manual Documentation, Release 2.4.0

Table 2: List of standard DHCPv4 options managed by Kea on its own
and not directly configurable by an administrator

Name Code Type Description
subnet-mask 1 ipv4-address calculated automatically, based on subnet definition.
host-name 12 string sent by client, generally governed by the DNS configuration.
dhcp- 50 ipv4-address may be sent by the client and the server should not set it.
requested-
address
dhcp-lease- 51 uint32 set automatically based on the valid-1lifetime parameter.
time
dhcp-message- 53 string sent by clients and servers. Set by the Kea engine depending on the
type situation and should never be configured explicitly.
dhcp- 55 uint8 array sent by clients and should never be sent by the server.
parameter-
request-list
dhcp-renewal- 58 uint32 governed by renew-timer parameter.
time
dhcp- 59 uint32 governed by rebind-timer parameter.
rebinding-time
dhcp-client- 61 binary sent by client, echoed back with the value sent by the client.
identifier
fqdn 81 record (uint8, part of the DDNS and D2 configuration.
uint8, uint8, fqdn)
dhcp-agent- 82 empty sent by the relay agent. This is an empty container option; see RAI
options option detail later in this section.
authenticate 90 binary sent by client, Kea does not yet validate it.
client-last- 91 uint32 sent by client, server does not set it.
transaction-
time
associated-ip 92 ipv4-address array sent by client, server responds with list of addresses.
subnet- 118 ipv4-address if present in client's messages, will be used in the subnet selection

selection

process.

The following table lists all option types used in the previous two tables with a description of what values are accepted

for them.

82

Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

Table 3: List of standard DHCP option types

Nam Meaning

bi- An arbitrary string of bytes, specified as a set of hexadecimal digits.

nary

boole A boolean value with allowed values true or false.

empt No value; data is carried in sub-options.

fqdn Fully qualified domain name (e.g. www.example.com).

ipv4- IPv4 address in the usual dotted-decimal notation (e.g. 192.0.2.1).

addre

ipv6- IPv6 address in the usual colon notation (e.g. 2001:db8::1).

addre

ipv6- IPv6 prefix and prefix length specified using CIDR notation, e.g. 2001:db8:1::/64. This data type is used to

prefi> represent an 8-bit field conveying a prefix length and the variable length prefix value.

psid PSID and PSID length separated by a slash, e.g. 3/4 specifies PSID=3 and PSID length=4. In the wire format
it is represented by an 8-bit field carrying PSID length (in this case equal to 4) and the 16-bits-long PSID
value field (in this case equal to "0011000000000000b" using binary notation). Allowed values for a PSID
length are O to 16. See RFC 7597 for details about the PSID wire representation.

recor Structured data that may be comprised of any types (except "record" and "empty"). The array flag applies to
the last field only.

string Any text. Please note that Kea silently discards any terminating/trailing nulls from the end of "string" options
when unpacking received packets. This is in keeping with RFC 2132, Section 2.

tu- A length encoded as an 8-bit (16-bit for DHCPv6) unsigned integer followed by a string of this length.

ple

uint8 An 8-bit unsigned integer with allowed values 0 to 255.

uintl A 16-bit unsigned integer with allowed values 0 to 65535.

uint3 A 32-bit unsigned integer with allowed values 0 to 4294967295.

int8 An 8-bit signed integer with allowed values -128 to 127.

intl6 A 16-bit signed integer with allowed values -32768 to 32767.

int32 A 32-bit signed integer with allowed values -2147483648 to 2147483647.

Kea also supports the Relay Agent Information (RAI, defined in RFC 3046) option, sometimes referred to as the relay
option, agent option, or simply option 82. The option itself is just a container and does not convey any information on
its own. The following table contains a list of RAI sub-options that Kea can understand. The RAI and its sub-options
are inserted by the relay agent and received by Kea; there is no need for Kea to be configured with those options. Kea's
classification and flex-id in host reservations can be used to process those and other options no listed in the table below.

Table 4: List of RAI sub-options that Kea can understand

Name Code Comment

circuit-id 1 Used when host-reservation-identifiers is set to circuit-id.
remote-id 2 Can be used with flex-id to identify hosts.

link-selection 5 If present, used to select the appropriate subnet.
subscriber-id 6 Can be used with flex-id to identify hosts.

server-id-override 11 If sent by the relay, Kea accepts it as the server-id.

relay-id 12 Identifies the relay

relay-port 19 If sent by the relay, Kea sends back its responses to this port.

All other RAI sub-options (including those not listed here) can be used in client classification to classify incoming
packets to specific classes and/or by 1ibdhcp_flex_id. so to construct a unique device identifier. For more infor-
mation about expressions used in client classification, and flex-id, see Client Classification. The RAI sub-options can
be referenced using relay4[option-code].hex. For example, to classify packets based on the remote-id (sub-

8.2. DHCPv4 Server Configuration 83

https://tools.ietf.org/html/rfc7597
https://tools.ietf.org/html/rfc2132#section-2
https://tools.ietf.org/html/rfc3046

Kea Administrator Reference Manual Documentation, Release 2.4.0

option code 2), one would use relay4[2] .hex. An example client class that would include all packets with a specific
remote-id value would looks as follows:

"Dhcp4": {
"client-classes": [
{
"name": "remote-id-1020304",
"test": "relay4[2].hex == 0x01020304",
}
1,
}

Classes may be used to segregate traffic into a relatively small number of groups, which then can be used to select
specific subnets, pools and extra options and more. If per host behavior is necessary, using host reservations with
flex-id is strongly recommended.

8.2.11 Custom DHCPv4 Options

Kea supports custom (non-standard) DHCPv4 options. Let's say that we want to define a new DHCPv4 option called
foo, which will have code 222 and will convey a single, unsigned, 32-bit integer value. Such an option can be defined
by putting the following entry in the configuration file:

"Dhcp4": {
"option-def": [
{
"name": "foo",
"code": 222,
"type": "uint32",
"array": false,
"record-types": "",
"space": "dhcp4",
"encapsulate": ""
e
1,
}

The false value of the array parameter determines that the option does NOT comprise an array of uint32 values
but is, instead, a single value. Two other parameters have been left blank: record-types and encapsulate. The
former specifies the comma-separated list of option data fields, if the option comprises a record of data fields. The
record-types value should be non-empty if type is set to "record"; otherwise it must be left blank. The latter
parameter specifies the name of the option space being encapsulated by the particular option. If the particular option
does not encapsulate any option space, the parameter should be left blank. Note that the option-def configuration
statement only defines the format of an option and does not set its value(s).

The name, code, and type parameters are required; all others are optional. The array parameter default value is
false. The record-types and encapsulate parameters default values are blank (""). The default space is dhcp4.

Once the new option format is defined, its value is set in the same way as for a standard option. For example, the
following commands set a global value that applies to all subnets.

84 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

"Dhcp4": {
"option-data": [
{
"name": "foo",
"code": 222,
"space": "dhcp4",
"csv-format": true,
"data": "12345"
B
1,
}

New options can take more complex forms than the simple use of primitives (uint8, string, ipv4-address, etc.); it is
possible to define an option comprising a number of existing primitives.

For example, say we want to define a new option that will consist of an IPv4 address, followed by an unsigned 16-bit
integer, followed by a boolean value, followed by a text string. Such an option could be defined in the following way:

"Dhcp4d": {
"option-def": [
{
"name": "bar",
"code": 223,
"space": "dhcp4",
"type": "record",
"array": false,
"record-types": "ipv4-address, uintl6, boolean, string",
"encapsulate": ""
e
1,
}

The type parameter is set to "record" to indicate that the option contains multiple values of different types. These
types are given as a comma-separated list in the record-types field and should be ones from those listed in List of
standard DHCP option types.

The option's values are set in an option-data statement as follows:

"Dhcp4": {
"option-data": [
{
"name": "bar",
"space": "dhcp4",
"code": 223,
"csv-format": true,
"data": "192.0.2.100, 123, true, Hello World"
}
1,
}

8.2. DHCPv4 Server Configuration 85

Kea Administrator Reference Manual Documentation, Release 2.4.0

The csv-format parameter is set to true to indicate that the data field comprises a comma-separated list of values.
The values in data must correspond to the types set in the record-types field of the option definition.

When array is set to true and type is set to "record", the last field is an array, i.e. it can contain more than one
value, as in:

"Dhcp4": {
"option-def": [
{
"name": "bar",
"code": 223,
"space": "dhcp4",
"type": "record",
"array": true,
"record-types": "ipv4-address, uintl6",
"encapsulate": ""
e
1,
}

The new option content is one IPv4 address followed by one or more 16-bit unsigned integers.

Note: In general, boolean values are specified as true or false, without quotes. Some specific boolean parameters
may also accept "true", "false", 0, 1, "0", and "1".

Note: Numbers can be specified in decimal or hexadecimal format. The hexadecimal format can be either plain (e.g.
abcd) or prefixed with Ox (e.g. Oxabcd).

8.2.12 DHCPv4 Private Options

Options with a code between 224 and 254 are reserved for private use. They can be defined at the global scope or at
the client-class local scope; this allows option definitions to be used depending on context, and option data to be set
accordingly. For instance, to configure an old PXEClient vendor:

"Dhcp4": {
"client-classes": [
{
"name": "pxeclient",
"test": "option[vendor-class-identifier].text == 'PXEClient'",
"option-def": [
{
"name": "configfile",
"code": 209,
"type": "string"
}
g
B

(continues on next page)

86 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

As the Vendor-Specific Information (VSI) option (code 43) has a vendor-specific format, i.e. can carry either raw binary
value or sub-options, this mechanism is also available for this option.

In the following example taken from a real configuration, two vendor classes use option 43 for different and incompatible
purposes:

"Dhcp4d": {
"option-def": [
{
"name": "cookie",
"code": 1,
"type": "string",
"space": "APC"
i
{
"name": "mtftp-ip",
"code": 1,
"type": "ipv4-address",
"space": "PXE"
b
1,
"client-classes": [
{
"name": "APC",
"test": "option[vendor-class-identifier].text == 'APC'",
"option-def": [
{
"name": "vendor-encapsulated-options",
"type": "empty",
"encapsulate": "APC"
}
1,
"option-data": [
{
"name": "cookie",
"space": "APC",
"data": "1APC"
3,
{
"name": "vendor-encapsulated-options"
B
1,
e
{
"name": "PXE",

(continues on next page)

8.2. DHCPv4 Server Configuration 87

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"test": "option[vendor-class-identifier].text == 'PXE'",
"option-def": [
{
"name": "vendor-encapsulated-options",

”type" : “empty” ,
"encapsulate": "PXE"

}
Iy
"option-data": [
{
"name": "mtftp-ip",
"space": "PXE",
"data": "0.0.0.0"
L
{
"name": "vendor-encapsulated-options"
Ko
g

The definition used to decode a VSI option is:
1. The local definition of a client class the incoming packet belongs to;
2. If none, the global definition;

3. If none, the last-resort definition described in the next section, DHCPv4 Vendor-Specific Options (backward-
compatible with previous Kea versions).

Note: This last-resort definition for the Vendor-Specific Information option (code 43) is not compatible with a raw
binary value. When there are known cases where a raw binary value will be used, a client class must be defined with
both a classification expression matching these cases and an option definition for the VSI option with a binary type and
no encapsulation.

Note: By default, in the Vendor-Specific Information option (code 43), sub-option code 0 and 255 mean PAD and
END respectively, according to RFC 2132. In other words, the sub-option code values of 0 and 255 are reserved. Kea
does, however, allow users to define sub-option codes from O to 255. If sub-options with codes 0 and/or 255 are defined,
bytes with that value are no longer treated as a PAD or an END, but as the sub-option code when parsing a VSI option
in an incoming query.

Option 43 input processing (also called unpacking) is deferred so that it happens after classification. This means clients
cannot be classified using option 43 sub-options. The definition used to unpack option 43 is determined as follows:

* If defined at the global scope, this definition is used.

« If defined at client class scope and the packet belongs to this class, the client class definition is used.

88 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2132

Kea Administrator Reference Manual Documentation, Release 2.4.0

* If not defined at global scope nor in a client class to which the packet belongs, the built-in last resort definition
is used. This definition only says the sub-option space is "vendor-encapsulated-options-space".

The output definition selection is a bit simpler:
« If the packet belongs to a client class which defines the option 43, use this definition.
* If defined at the global scope, use this definition.
¢ Otherwise, use the built-in last-resort definition.

Since they use a specific/per vendor option space, sub-options are defined at the global scope.

Note: Option definitions in client classes are allowed only for this limited option set (codes 43 and from 224 to 254),
and only for DHCPv4.

8.2.13 DHCPv4 Vendor-Specific Options

Currently there are two option spaces defined for kea-dhcp4: dhcp4 (for the top-level DHCPv4 options) and
"vendor-encapsulated-options-space", which is empty by default but in which options can be defined. Those
options are carried in the Vendor-Specific Information option (code 43). The following examples show how to define
an option foo with code 1 that comprises an IPv4 address, an unsigned 16-bit integer, and a string. The foo option is
conveyed in a Vendor-Specific Information option.

The first step is to define the format of the option:

"Dhcp4": {
"option-def": [
{
"name": "foo",
"code": 1,
"space": "vendor-encapsulated-options-space",
"type": "record",
"array": false,
"record-types": "ipv4-address, uintl6, string",
"encapsulate": ""
}
1,
}

Note that the option space is set to "vendor-encapsulated-options-space". Once the option format is defined,
the next step is to define actual values for that option:

"Dhcp4": {
"option-data": [

{
"name": "foo",
"space": "vendor-encapsulated-options-space",
"code": 1,
"csv-format": true,
"data": "192.0.2.3, 123, Hello World"

}

(continues on next page)

8.2. DHCPv4 Server Configuration 89

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

In this example, we also include the Vendor-Specific Information option, which conveys our sub-option foo. This is
required; otherwise, the option will not be included in messages sent to the client.

"Dhcp4": {
"option-data": [
{
"name": "vendor-encapsulated-options"
}
1,
}

Alternatively, the option can be specified using its code.

"Dhcpd": {
"option-data": [
{
"code": 43
}
1,
}

Another popular option that is often somewhat imprecisely called the "vendor option" is option 125. Its proper name
is the "vendor-independent vendor-specific information option" or "vivso". The idea behind vivso options is that each
vendor has its own unique set of options with their own custom formats. The vendor is identified by a 32-bit unsigned
integer called enterprise-number or vendor-id.

The standard spaces defined in Kea and their options are:

¢ vendor-4491: Cable Television Laboratories, Inc. for DOCSIS3 options:

option option option description

code name

1 oro ORO (or Option Request Option), used by clients to request a list of options they are
interested in.

2 tftp-servers a list of IPv4 addresses of TFTP servers to be used by the cable modem

In Kea, each vendor is represented by its own vendor space. Since there are hundreds of vendors and they sometimes
use different option definitions for different hardware, it is impossible for Kea to support them all natively. Fortunately,
it is easy to define support for new vendor options. As an example, the Genexis home gateway device requires the vivso
125 option to be sent with a sub-option 2 that contains a string with the TFTP server URL. To support such a device,
three steps are needed: first, establish option definitions that explain how the option is supposed to be formed; second,
define option values; and third, tell Kea when to send those specific options, via client classification.

An example snippet of a configuration could look similar to the following:

"Dhcp4d": {
// First, we need to define that the sub-option 2 in vivso option for
(continues on next page)

90 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)
// vendor-id 25167 has a specific format (it's a plain string in this example).
// After this definition, we can specify values for option tftp.
"option-def": [

{
// We define a short name, so the option can be referenced by name.
// The option has code 2 and resides within vendor space 25167.
// Its data is a plain string.
"name": "tftp",
"code": 2,
"space": "vendor-25167",
"type": "string"
}
1,
"client-classes": [
{
// We now need to tell Kea how to recognize when to use vendor space 25167.
// Usually we can use a simple expression, such as checking if the device
// sent a vivso option with specific vendor-id, e.g. "vendor[4491].exists".
// Unfortunately, Genexis is a bit unusual in this aspect, because it
// doesn't send vivso. In this case we need to look into the vendor class
// (option code 60) and see if there's a specific string that identifies
// the device. Alternatively, one can make use of the automated °VENDOR_
-CLASS_"
// client class and replace "name" and "test" with "~ "name": "VENDOR_CLASS_
—HMC1000""
// and no test expression.
"name": "cpe_genexis",
"test": "substring(option[60].hex,0,7) == "HMC1000'",
// Once the device is recognized, we want to send two options:
// the vivso option with vendor-id set to 25167, and a sub-option 2.
"option-data": [
{
"name": "vivso-suboptions",
"data": "25167"
B
// The sub-option 2 value is defined as any other option. However,
// we want to send this sub-option 2, even when the client didn't
// explicitly request it (often there is no way to do that for
// vendor options). Therefore we use always-send to force Kea
// to always send this option when 25167 vendor space is involved.
{
"name": "tftp",
"space": "vendor-25167",
"data": "tftp://192.0.2.1/genexis/HMC1000.v1.3.0-R.img",
"always-send": true
}
1
}
]

(continues on next page)

8.2. DHCPv4 Server Configuration 91

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)
3

By default, Kea sends back only those options that are requested by a client, unless there are protocol rules that tell the
DHCP server to always send an option. This approach works nicely in most cases and avoids problems with clients
refusing responses with options they do not understand. However, the situation with vendor options is more complex,
as they are not requested the same way as other options, are not well-documented in official RFCs, or vary by vendor.

Some vendors (such as DOCSIS, identified by vendor option 4491) have a mechanism to request specific vendor options
and Kea is able to honor those (sub-option 1). Unfortunately, for many other vendors, such as Genexis (25167, discussed
above), Kea does not have such a mechanism, so it cannot send any sub-options on its own. To solve this issue, we
devised the concept of persistent options. Kea can be told to always send options, even if the client did not request
them. This can be achieved by adding "always-send": true to the option data entry. Note that in this particular

case an option is defined in vendor space 25167. With always-send enabled, the option is sent every time there is a
need to deal with vendor space 25167.

This is also how kea-dhcp4 can be configured to send multiple vendor options from different vendors, along with
each of their specific vendor ID. If these options need to be sent by the server regardless of whether the client specified

any enterprise number, "always-send": true must be configured for the suboptions that will be included in the
vivso-suboptions option (code 125).

"Dhcp4": {
"option-data": [
Typically DHCPv4 clients will send a Parameter Request List option (code 55).
- for

vivso-suboptions (code 125), and that is enough for Kea to understand that it.
—needs to

send the option. These options still need to be defined in the configuration,..
—,one per

each vendor, but they don't need "always-send" enabled in that case. For.
—misbehaving

clients that to do not explicitly request it, one may alternatively set
— "always-send"

to true for them as well. This is referring to the following two entries in.,
—option-data.

{
"name": "vivso-suboptions",
"space": "dhcp4",
"data": "2234"
B
{
"name": "vivso-suboptions",
"space": "dhcp4",
"data": "3561"
e
{
"always-send": true,
"data": "tagged",
"name": "tag",
"space": "vendor-2234"
e
{

"always-send": true,
"data": "https://example.com:1234/path",

(continues on next page)

92 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"name": "url",
"space": "vendor-3561"
}
1,
"option-def": [
{
"code": 22,
"name": "tag",
"space": "vendor-2234",
"type": "string"
e
{
"code": 11,
"name": "url",
"space": "vendor-3561",
"type": "string"
}
]

Another possibility is to redefine the option; see DHCPv4 Private Options.

Kea comes with several example configuration files. Some of them showcase how to configure options 60 and 43. See
doc/examples/kea4/vendor-specific. json and doc/examples/kead/vivso. json in the Kea sources.

Note: kea-dhcp4 is able to recognize multiple Vendor Class Identifier options (code 60) with different vendor IDs
in the client requests and to send multiple vivso options (code 125) in the responses, one for each vendor.

kea-dhcp4 honors DOCSIS sub-option 1 (ORO) and adds only requested options if this sub-option is present in the
client request.

Currently only one vendor is supported for the vivco-suboptions (code 124) option. Specifying multiple enterprise
numbers within a single option instance or multiple options with different enterprise numbers is not supported.

8.2.14 Nested DHCPv4 Options (Custom Option Spaces)

It is sometimes useful to define a completely new option space, such as when a user creates a new option in the standard
option space (dhcp4) and wants this option to convey sub-options. Since they are in a separate space, sub-option codes
have a separate numbering scheme and may overlap with the codes of standard options.

Note that the creation of a new option space is not required when defining sub-options for a standard option, because one
is created by default if the standard option is meant to convey any sub-options (see DHCPv4 Vendor-Specific Options).

If we want a DHCPv4 option called container with code 222, that conveys two sub-options with codes 1 and 2, we
first need to define the new sub-options:

"Dhcp4": {
"option-def": [
{
"name": "suboptl",
"code": 1,
"space": "isc",

(continues on next page)

8.2. DHCPv4 Server Configuration 93

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"type": "ipv4-address",

"record-types": ,
"array": false,

"encapsulate": ""
B
{
"name": "subopt2",
"code": 2,
"space": "isc",
"type": "string",
"record-types": "",
"array": false,
"encapsulate": ""
}

Note that we have defined the options to belong to a new option space (in this case, "isc").

The next step is to define a regular DHCPv4 option with the desired code and specify that it should include options
from the new option space:

"Dhcp4": {
"option-def": [
{
"name": "container",
"code": 222,
"space": "dhcp4",
"type": "empty",
"array": false,
"record-types": "",
"encapsulate": "isc"
b
1,
}

The name of the option space in which the sub-options are defined is set in the encapsulate field. The type field is
set to "empty", to indicate that this option does not carry any data other than sub-options.

Finally, we can set values for the new options:

{
"Dhcp4d": {
"option-data": [
{
"name": "suboptl",
"code": 1,
"space": "isc",

"data": "192.0.2.3"

(continues on next page)

94 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

{
"name": "subopt2",
"code": 2,
"space": "isc",
"data": "Hello world"

Fo

{
"name": "container",
"code": 222,
"space": "dhcp4"

}

It is possible to create an option which carries some data in addition to the sub-options defined in the encapsulated
option space. For example, if the container option from the previous example were required to carry a uint16 value
as well as the sub-options, the type value would have to be set to "uint16" in the option definition. (Such an option
would then have the following data structure: DHCP header, uint16 value, sub-options.) The value specified with the
data parameter — which should be a valid integer enclosed in quotes, e.g. "123" — would then be assigned to the
uint16 field in the container option.

8.2.15 Unspecified Parameters for DHCPv4 Option Configuration

In many cases it is not required to specify all parameters for an option configuration, and the default values can be used.
However, it is important to understand the implications of not specifying some of them, as it may result in configuration
errors. The list below explains the behavior of the server when a particular parameter is not explicitly specified:

* name - the server requires either an option name or an option code to identify an option. If this parameter is
unspecified, the option code must be specified.

* code - the server requires either an option name or an option code to identify an option; this parameter may be
left unspecified if the name parameter is specified. However, this also requires that the particular option have a
definition (either as a standard option or an administrator-created definition for the option using an option-def
structure), as the option definition associates an option with a particular name. It is possible to configure an
option for which there is no definition (unspecified option format). Configuration of such options requires the
use of the option code.

* space - if the option space is unspecified it defaults to dhcp4, which is an option space holding standard DHCPv4
options.

» data - if the option data is unspecified it defaults to an empty value. The empty value is mostly used for the
options which have no payload (boolean options), but it is legal to specify empty values for some options which
carry variable-length data and for which the specification allows a length of 0. For such options, the data param-
eter may be omitted in the configuration.

» csv-format - if this value is not specified, the server assumes that the option data is specified as a list of comma-
separated values to be assigned to individual fields of the DHCP option.

8.2. DHCPv4 Server Configuration 95

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.2.16 Support for Long Options

The kea-dhcp4 server partially supports long options (RFC3396). Since Kea 2.1.6, the server accepts configuring long
options and sub-options (longer than 255 bytes). The options and sub-options are stored internally in their unwrapped
form and they can be processed as usual using the parser language. On send, the server splits long options and sub-
options into multiple options and sub-options, using the respective option code.

{
"option-def": [
{
"array": false,
"code": 240,
"encapsulate": "",
"name": "my-option",
"space": "dhcp4",
"type": "string"
}
1,
"subnet4": [
{
"id": 1,

"subnet": "192.0.2.0/24",
"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",

"option-data": [

{
"always-send": false,
"code": 240,
"name": "my-option",

"csv-format": true,
"data": "data \
-00010203040506070809-00010203040506070809-
- 00010203040506070809-00010203040506070809 \
-00010203040506070809-00010203040506070809-
—00010203040506070809-00010203040506070809 \
-00010203040506070809-00010203040506070809-
- 00010203040506070809-00010203040506070809 \
-data",
"space": "dhcp4"

Note: Inthe example above, the data has been wrapped into several lines for clarity, but Kea does not support wrapping
in the configuration file.

This example illustrates configuring a custom long option (exceeding 255 octets) in a reservation. When sending a

96 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

response, the server splits this option into two options, each with the code 240.

Note: Currently the server does not support storing long options in databases, either host reservations or the configu-
ration backend.

The server is also able to receive packets with split options (options using the same option code) and to fuse the data
chunks into one option. This is also supported for sub-options if each sub-option data chunk also contains the sub-option
code and sub-option length.

8.2.17 Stateless Configuration of DHCPv4 Clients

The DHCPv4 server supports stateless client configuration, whereby the client has an IP address configured (e.g. using
manual configuration) and only contacts the server to obtain other configuration parameters, such as addresses of DNS
servers. To obtain the stateless configuration parameters, the client sends the DHCPINFORM message to the server
with the ciaddr set to the address that the client is currently using. The server unicasts the DHCPACK message to the
client that includes the stateless configuration ("yiaddr" not set).

The server responds to the DHCPINFORM when the client is associated with a subnet defined in the server's configu-
ration. An example subnet configuration looks like this:

"Dhcp4": {
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"option-data": [
{
"name": "domain-name-servers",
"code": 6,
"data": "192.0.2.200,192.0.2.201",
"csv-format": true,
"space": "dhcp4"
}
]
}
]
}

This subnet specifies the single option which will be included in the DHCPACK message to the client in response
to DHCPINFORM. The subnet definition does not require the address pool configuration if it will be used solely for
stateless configuration.

This server will associate the subnet with the client if one of the following conditions is met:
* The DHCPINFORM is relayed and the giaddr matches the configured subnet.
e The DHCPINFORM is unicast from the client and the ciaddr matches the configured subnet.

* The DHCPINFORM is unicast from the client and the ciaddr is not set, but the source address of the IP packet
matches the configured subnet.

* The DHCPINFORM is not relayed and the IP address on the interface on which the message is received matches
the configured subnet.

8.2. DHCPv4 Server Configuration 97

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.2.18 Client Classification in DHCPv4

The DHCPv4 server includes support for client classification. For a deeper discussion of the classification process, see
Client Classification.

In certain cases it is useful to configure the server to differentiate between DHCP client types and treat them accord-
ingly. Client classification can be used to modify the behavior of almost any part of DHCP message processing. Kea
currently offers client classification via private options and option 43 deferred unpacking; subnet selection; pool selec-
tion; assignment of different options; and, for cable modems, specific options for use with the TFTP server address and
the boot file field.

Kea can be instructed to limit access to given subnets based on class information. This is particularly useful for cases
where two types of devices share the same link and are expected to be served from two different subnets. The primary
use case for such a scenario is cable networks, where there are two classes of devices: the cable modem itself, which
should be handed a lease from subnet A; and all other devices behind the modem, which should get leases from subnet
B. That segregation is essential to prevent overly curious end-users from playing with their cable modems. For details
on how to set up class restrictions on subnets, see Configuring Subnets With Class Information.

When subnets belong to a shared network, the classification applies to subnet selection but not to pools; that is, a pool
in a subnet limited to a particular class can still be used by clients which do not belong to the class, if the pool they are
expected to use is exhausted. The limit on access based on class information is also available at the pool level within a
subnet: see Configuring Pools With Class Information. This is useful when segregating clients belonging to the same
subnet into different address ranges.

In a similar way, a pool can be constrained to serve only known clients, i.e. clients which have a reservation, using the
built-in KNOWN or UNKNOWN classes. Addresses can be assigned to registered clients without giving a different address
per reservation: for instance, when there are not enough available addresses. The determination whether there is a
reservation for a given client is made after a subnet is selected, so it is not possible to use KNOWN/UNKNOWN classes to
select a shared network or a subnet.

The process of classification is conducted in five steps. The first step is to assess an incoming packet and assign it
to zero or more classes. The second step is to choose a subnet, possibly based on the class information. When the
incoming packet is in the special class DROP, it is dropped and a debug message logged. The next step is to evaluate
class expressions depending on the built-in KNOWN/UNKNOWN classes after host reservation lookup, using them for pool
selection and assigning classes from host reservations. The list of required classes is then built and each class of the
list has its expression evaluated; when it returns true, the packet is added as a member of the class. The last step is to
assign options, again possibly based on the class information. More complete and detailed information is available in
Client Classification.

There are two main methods of classification. The first is automatic and relies on examining the values in the vendor
class options or the existence of a host reservation. Information from these options is extracted, and a class name is
constructed from it and added to the class list for the packet. The second method specifies an expression that is evaluated
for each packet. If the result is true, the packet is a member of the class.

Note: The new early-global-reservations-lookup global parameter flag enables a lookup for global reser-
vations before the subnet selection phase. This lookup is similar to the general lookup described above with two
differences:

* the lookup is limited to global host reservations

¢ the UNKNOWN class is never set

Note: Care should be taken with client classification, as it is easy for clients that do not meet class criteria to be denied
all service.

98 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.2.18.1 Setting Fixed Fields in Classification

It is possible to specify that clients belonging to a particular class should receive packets with specific values in certain
fixed fields. In particular, three fixed fields are supported: next-server (conveys an IPv4 address, which is set in the
siaddr field), server-hostname (conveys a server hostname, can be up to 64 bytes long, and is sent in the sname
field) and boot-file-name (conveys the configuration file, can be up to 128 bytes long, and is sent using the file
field).

Obviously, there are many ways to assign clients to specific classes, but for PXE clients the client architecture type
option (code 93) seems to be particularly suited to make the distinction. The following example checks whether the
client identifies itself as a PXE device with architecture EFI x86-64, and sets several fields if it does. See Section 2.1
of RFC 4578) or the client documentation for specific values.

"Dhcp4": {
"client-classes": [
{
"name": "ipxe_efi_x64",
"test": "option[93].hex == 0x0009",
"next-server": "192.0.2.254",
"server-hostname": "hal9000",
"boot-file-name": "/dev/null"
B
1,
}

If an incoming packet is matched to multiple classes, then the value used for each field will come from the first class
that specifies the field, in the order the classes are assigned to the packet.

Note: The classes are ordered as specified in the configuration.

8.2.18.2 Using Vendor Class Information in Classification

The server checks whether an incoming packet includes the vendor class identifier option (60). If it does, the content
of that option is prepended with VENDOR_CLASS_, and it is interpreted as a class. For example, modern cable modems
send this option with value docsis3.0, so the packet belongs to the class VENDOR_CLASS_docsis3.0.

Note: Certain special actions for clients in VENDOR_CLASS_docsis3.0 can be achieved by defining
VENDOR_CLASS_docsis3.0 and setting its next-server and boot-file-name values appropriately.

This example shows a configuration using an automatically generated VENDOR_CLASS_ class. The administrator of the
network has decided that addresses from the range 192.0.2.10 to 192.0.2.20 are going to be managed by the Dhcp4
server and only clients belonging to the DOCSIS 3.0 client class are allowed to use that pool.

"Dhcp4d": {
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1,

(continues on next page)

8.2. DHCPv4 Server Configuration 99

https://tools.ietf.org/html/rfc4578#section-2.1
https://tools.ietf.org/html/rfc4578#section-2.1

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"client-class": "VENDOR_CLASS_docsis3.0"

8.2.18.3 Defining and Using Custom Classes

The following example shows how to configure a class using an expression and a subnet using that class. This con-
figuration defines the class named Client_foo. It is comprised of all clients whose client IDs (option 61) start with
the string foo. Members of this class will be given addresses from 192.0.2.10 to 192.0.2.20 and the addresses of their
DNS servers set to 192.0.2.1 and 192.0.2.2.

"Dhcp4": {
"client-classes": [
{
"name": "Client_foo",
"test": "substring(option[61].hex,0,3) == 'foo'",
"option-data": [
{
"name": "domain-name-servers",
"code": 6,
"space": "dhcp4",
"csv-format": true,
"data": "192.0.2.1, 192.0.2.2"
}
1
b
1,
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1],
"client-class": "Client_foo"
e
1,
}

100 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.2.18.4 Required Classification

In some cases it is useful to limit the scope of a class to a shared network, subnet, or pool. There are two parameters
which are used to limit the scope of the class by instructing the server to evaluate test expressions when required.

The first one is the per-class only-if-required flag, which is false by default. When it is set to true, the test
expression of the class is not evaluated at the reception of the incoming packet but later, and only if the class evaluation
is required.

The second is require-client-classes, which takes a list of class names and is valid in shared-network, subnet,
and pool scope. Classes in these lists are marked as required and evaluated after selection of this specific shared
network/subnet/pool and before output-option processing.

In this example, a class is assigned to the incoming packet when the specified subnet is used:

"Dhcp4": {
"client-classes": [
{
"name": "Client_foo",
"test": "member('ALL')",
"only-if-required": true
e
1,
"subnet4": [
{
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.10 - 192.0.2.20" } 1],
"require-client-classes": ["Client_foo"],
B
1,

Required evaluation can be used to express complex dependencies like subnet membership. It can also be used to reverse
the precedence; if option-data is set in a subnet, it takes precedence over option-data in a class. If option-data
is moved to a required class and required in the subnet, a class evaluated earlier may take precedence.

Required evaluation is also available at the shared-network and pool levels. The order in which required classes are
considered is: shared-network, subnet, and pool, i.e. in the reverse order from the way in which option-data is
processed.

Note: Vendor-Identifying Vendor Options are a special case: for all other options an option is identified by its code
point, but vivco-suboptions (124) and vivso-suboptions (125) are identified by the pair of code point and vendor
identifier. This has no visible effect for vivso-suboptions, whose value is the vendor identifier, but it is different for
vivco-suboptions, where the value is a record with the vendor identifier and a binary value. For instance, in:

"Dhcp4": {
"option-data": [
{
"name": "vivco-suboptions",
"always-send": true,

(continues on next page)

8.2. DHCPv4 Server Configuration 101

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"data": "1234, 03666f6f"

B

{
"name": "vivco-suboptions",
"always-send": true,
"data": "5678, 03626172"

P

}

The first option-data entry does not hide the second one, because vendor identifiers (1234 and 5678) are different:
the responses will carry two instances of the vivco-suboptions option, each for a different vendor.

8.2.19 DDNS for DHCPv4

As mentioned earlier, kea-dhcp4 can be configured to generate requests to the DHCP-DDNS server, kea-dhcp-ddns,
(referred to herein as "D2") to update DNS entries. These requests are known as NameChangeRequests or NCRs. Each
NCR contains the following information:

1. Whether it is a request to add (update) or remove DNS entries.
2. Whether the change requests forward DNS updates (A records), reverse DNS updates (PTR records), or both.

3. The Fully Qualified Domain Name (FQDN), lease address, and DHCID (information identifying the client as-
sociated with the FQDN).

DDNS-related parameters are split into two groups:
1. Connectivity Parameters

These are parameters which specify where and how kea-dhcp4 connects to and communicates with
D2. These parameters can only be specified within the top-level dhcp-ddns section in the kea-dhcp4
configuration. The connectivity parameters are listed below:

¢ enable-updates
e server-ip
e server-port
e sender-ip
¢ sender-port
* max-queue-size
* ncr-protocol
e ncr-format"
2. Behavioral Parameters

These parameters influence behavior such as how client host names and FQDN options are han-
dled. They have been moved out of the dhcp-ddns section so that they may be specified at the
global, shared-network, and/or subnet levels. Furthermore, they are inherited downward from global
to shared-network to subnet. In other words, if a parameter is not specified at a given level, the value
for that level comes from the level above it. The behavioral parameters are as follows:

102 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

* ddns-send-updates

¢ ddns-override-no-update

¢ ddns-override-client-update
¢ ddns-replace-client-name"

¢ ddns-generated-prefix

e ddns-qualifying-suffix

¢ ddns-update-on-renew

* ddns-use-conflict-resolution
¢ ddns-ttl-percent

* hostname-char-set

* hostname-char-replacement

Note: For backward compatibility, configuration parsing still recognizes the original behavioral parameters specified
in dhcp-ddns, by translating the parameter into its global equivalent. If a parameter is specified both globally and in
dhcp-ddns, the latter value is ignored. In either case, a log is emitted explaining what has occurred. Specifying these
values within dhcp-ddns is deprecated and support for it will be removed.

The default configuration and values would appear as follows:

"Dhcp4": {
"dhcp-ddns": {

// Connectivity parameters
"enable-updates": false,
"server-ip": "127.0.0.1",
"server-port":53001,
"sender-ip":"",
"sender-port":0,
"max-queue-size":1024,
"ncr-protocol":"UDP",
"ncr-format":"JSON"

b,

// Behavioral parameters (global)
"ddns-send-updates": true,
"ddns-override-no-update": false,
"ddns-override-client-update": false,
"ddns-replace-client-name": '"never",
"ddns-generated-prefix": "myhost",
"ddns-qualifying-suffix": "",
"ddns-update-on-renew": false,
"ddns-use-conflict-resolution": true,

"hostname-char-set": s
"hostname-char-replacement": "",

There are two parameters which determine if kea-dhcp4 can generate DDNS requests to D2: the existing
dhcp-ddns:enable-updates parameter, which now only controls whether kea-dhcp4 connects to D2; and the new

8.2. DHCPv4 Server Configuration 103

Kea Administrator Reference Manual Documentation, Release 2.4.0

behavioral parameter, ddns-send-updates, which determines whether DDNS updates are enabled at a given level
(i.e. global, shared-network, or subnet). The following table shows how the two parameters function together:

Table 5: Enabling and disabling DDNS updates

dhcp-ddns: enable- Global ddns-send- Outcome

updates updates

false (default) false no updates at any scope

false true (default) no updates at any scope

true false updates only at scopes with a local value of true for
ddns-enable-updates

true true updates at all scopes except those with a local value of false for

ddns-enable-updates

Kea 1.9.1 added two new parameters; the first is ddns-update-on-renew. Normally, when leases are renewed, the
server only updates DNS if the DNS information for the lease (e.g. FQDN, DNS update direction flags) has changed.
Setting ddns-update-on-renew to true instructs the server to always update the DNS information when a lease is
renewed, even if its DNS information has not changed. This allows Kea to "self-heal" if it was previously unable to add
DNS entries or they were somehow lost by the DNS server.

Note: Setting ddns-update-on-renew to true may impact performance, especially for servers with numerous
clients that renew often.

The second parameter added in Kea 1.9.1 is ddns-use-conflict-resolution. The value of this parameter is passed
by kea-dhcp4 to D2 with each DNS update request. When true (the default value), D2 employs conflict resolution, as
described in RFC 4703, when attempting to fulfill the update request. When false, D2 simply attempts to update the
DNS entries per the request, regardless of whether they conflict with existing entries owned by other DHCPv4 clients.

Note: Setting ddns-use-conflict-resolutionto false disables the overwrite safeguards that the rules of conflict
resolution (from RFC 4703) are intended to prevent. This means that existing entries for an FQDN or an IP address
made for Client-A can be deleted or replaced by entries for Client-B. Furthermore, there are two scenarios by which
entries for multiple clients for the same key (e.g. FQDN or IP) can be created.

1. Client-B uses the same FQDN as Client-A but a different IP address. In this case, the forward DNS entries (A and
DHCID RRs) for Client-A will be deleted as they match the FQDN and new entries for Client-B will be added. The
reverse DNS entries (PTR and DHCID RRs) for Client-A, however, will not be deleted as they belong to a different IP
address, while new entries for Client-B will still be added.

2. Client-B uses the same IP address as Client-A but a different FQDN. In this case the reverse DNS entries (PTR and
DHCID RRs) for Client-A will be deleted as they match the IP address, and new entries for Client-B will be added.
The forward DNS entries (A and DHCID RRs) for Client-A, however, will not be deleted, as they belong to a different
FQDN, while new entries for Client-B will still be added.

Disabling conflict resolution should be done only after careful review of specific use cases. The best way to avoid
unwanted DNS entries is to always ensure lease changes are processed through Kea, whether they are released, expire,
or are deleted via the lease4-del command, prior to reassigning either FQDNSs or IP addresses. Doing so causes
kea-dhcp4 to generate DNS removal requests to D2.

The DNS entries Kea creates contain a value for TTL (time to live). The kea-dhcp4 server calculates that value based
on RFC 4702, Section 5, which suggests that the TTL value be 1/3 of the lease's lifetime, with a minimum value of 10
minutes.

The parameter ddns-ttl-percent, when specified, causes the TTL to be calculated as a simple percentage of the

104 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4703
https://tools.ietf.org/html/rfc4702#section-5

Kea Administrator Reference Manual Documentation, Release 2.4.0

lease's lifetime, using the parameter's value as the percentage. It is specified as a decimal percent (e.g. .25, .75, 1.00)
and may be specified at the global, shared-network, and subnet levels. By default it is unspecified.

8.2.19.1 DHCP-DDNS Server Connectivity

For NCRs to reach the D2 server, kea-dhcp4 must be able to communicate with it. kea-dhcp4 uses the following
configuration parameters to control this communication:

* enable-updates - Enables connectivity to kea-dhcp-ddns such that DDNS updates can be constructed and
sent. It must be true for NCRs to be generated and sent to D2. It defaults to false.

e server-ip - This is the IP address on which D2 listens for requests. The default is the local loopback interface
at address 127.0.0.1. Either an IPv4 or IPv6 address may be specified.

» server-port - This is the port on which D2 listens for requests. The default value is 53001.

* sender-ip - This is the IP address which kea-dhcp4 uses to send requests to D2. The default value is blank,
which instructs kea-dhcp4 to select a suitable address.

* sender-port - This is the port which kea-dhcp4 uses to send requests to D2. The default value of ® instructs
kea-dhcp4 to select a suitable port.

* max-queue-size - This is the maximum number of requests allowed to queue while waiting to be sent to D2.
This value guards against requests accumulating uncontrollably if they are being generated faster than they can
be delivered. If the number of requests queued for transmission reaches this value, DDNS updating is turned off
until the queue backlog has been sufficiently reduced. The intent is to allow the kea-dhcp4 server to continue
lease operations without running the risk that its memory usage grows without limit. The default value is 1024.

* ncr-protocol - This specifies the socket protocol to use when sending requests to D2. Currently only UDP is
supported.

* ncr-format - This specifies the packet format to use when sending requests to D2. Currently only JSON format
is supported.

By default, kea-dhcp-ddns is assumed to be running on the same machine as kea-dhcp4, and all of the default values
mentioned above should be sufficient. If, however, D2 has been configured to listen on a different address or port, these
values must be altered accordingly. For example, if D2 has been configured to listen on 192.168.1.10 port 900, the
following configuration is required:

"Dhcp4d": {
"dhcp-ddns": {
"server-ip": "192.168.1.10",
"server-port": 900,

8.2. DHCPv4 Server Configuration 105

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.2.19.2 When Does the kea-dhcp4 Server Generate a DDNS Request?

The kea-dhcp4 server follows the behavior prescribed for DHCP servers in REC 4702. It is important to keep in mind
that kea-dhcp4 makes the initial decision of when and what to update and forwards that information to D2 in the
form of NCRs. Carrying out the actual DNS updates and dealing with such things as conflict resolution are within the
purview of D2 itself (see The DHCP-DDNS Server). This section describes when kea-dhcp4 generates NCRs and the
configuration parameters that can be used to influence this decision. It assumes that both the connectivity parameter
enable-updates and the behavioral parameter ddns-send-updates, are true.

In general, kea-dhcp4 generates DDNS update requests when:
1. A new lease is granted in response to a DHCPREQUEST;
2. An existing lease is renewed but the FQDN associated with it has changed; or
3. An existing lease is released in response to a DHCPRELEASE.

In the second case, lease renewal, two DDNS requests are issued: one request to remove entries for the previous FQDN,
and a second request to add entries for the new FQDN. In the third case, a lease release - a single DDNS request - to
remove its entries will be made.

As for the first case, the decisions involved when granting a new lease are more complex. When a new lease is granted,
kea-dhcp4 generates a DDNS update request if the DHCPREQUEST contains either the FQDN option (code 81) or
the Host Name option (code 12). If both are present, the server uses the FQDN option. By default, kea-dhcp4 respects
the FQDN N and S flags specified by the client as shown in the following table:

Table 6: Default FQDN flag behavior

Client Client Intent Server Response Server
Flags:N-S Flags:N-S-O
0-0 Client wants to do forward updates, server Server generates reverse-only re- 1-0-0

should do reverse updates quest
0-1 Server should do both forward and reverse up- Server generates request to up- 0-1-0

dates date both directions
1-0 Client wants no updates done Server does not generate arequest 1-0-0

The first row in the table above represents "client delegation." Here the DHCP client states that it intends to
do the forward DNS updates and the server should do the reverse updates. By default, kea-dhcp4 honors the
client's wishes and generates a DDNS request to the D2 server to update only reverse DNS data. The parameter
ddns-override-client-update can be used to instruct the server to override client delegation requests. When
this parameter is true, kea-dhcp4 disregards requests for client delegation and generates a DDNS request to update
both forward and reverse DNS data. In this case, the N-S-O flags in the server's response to the client will be 0-1-1
respectively.

(Note that the flag combination N=1, S=1 is prohibited according to RFC 4702. If such a combination is received from
the client, the packet will be dropped by kea-dhcp4.)

To override client delegation, set the following values in the configuration file:

"Dhcp4d": {
"ddns-override-client-update": true,

}

The third row in the table above describes the case in which the client requests that no DNS updates be done. The
parameter ddns-override-no-update can be used to instruct the server to disregard the client's wishes. When this
parameter is true, kea-dhcp4 generates DDNS update requests to kea-dhcp-ddns even if the client requests that no
updates be done. The N-S-O flags in the server's response to the client will be 0-1-1.

106 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc4702
https://tools.ietf.org/html/rfc4702

Kea Administrator Reference Manual Documentation, Release 2.4.0

To override client delegation, issue the following commands:

"Dhcp4": {
"ddns-override-no-update": true,

The kea-dhcp4 server always generates DDNS update requests if the client request only contains the Host Name
option. In addition, it includes an FQDN option in the response to the client with the FQDN N-S-O flags set to 0-1-0,
respectively. The domain name portion of the FQDN option is the name submitted to D2 in the DDNS update request.

8.2.19.3 kea-dhcp4 Name Generation for DDNS Update Requests

Each NameChangeRequest must of course include the fully qualified domain name whose DNS entries are to be af-
fected. kea-dhcp4 can be configured to supply a portion or all of that name, based on what it receives from the client
in the DHCPREQUEST.

The default rules for constructing the FQDN that will be used for DNS entries are:

1. If the DHCPREQUEST contains the client FQDN option, take the candidate name from there; otherwise, take it
from the Host Name option.

2. If the candidate name is a partial (i.e. unqualified) name, then add a configurable suffix to the name and use the
result as the FQDN.

3. If the candidate name provided is empty, generate an FQDN using a configurable prefix and suffix.
4. If the client provides neither option, then take no DNS action.

These rules can be amended by setting the ddns-replace-client-name parameter, which provides the following
modes of behavior:

* never - use the name the client sent. If the client sent no name, do not generate one. This is the default mode.
* always - replace the name the client sent. If the client sent no name, generate one for the client.
* when-present - replace the name the client sent. If the client sent no name, do not generate one.

* when-not-present - use the name the client sent. If the client sent no name, generate one for the client.

Note: In early versions of Kea, this parameter was a boolean and permitted only values of true and false. Boolean
values have been deprecated and are no longer accepted. Administrators currently using booleans must replace them
with the desired mode name. A value of true maps to when-present, while false maps to never.

For example, to instruct kea-dhcp4 to always generate the FQDN for a client, set the parameter
ddns-replace-client-name to always as follows:

"Dhcp4": {
"ddns-replace-client-name": "always",

The prefix used in the generation of an FQDN is specified by the ddns-generated-prefix parameter. The default
value is "myhost". To alter its value, simply set it to the desired string:

8.2. DHCPv4 Server Configuration 107

Kea Administrator Reference Manual Documentation, Release 2.4.0

"Dhcpd": {
"ddns-generated-prefix": "another.host",

}

The suffix used when generating an FQDN, or when qualifying a partial name, is specified by the
ddns-qualifying-suffix parameter. It is strongly recommended that the user supply a value for the qualifying
prefix when DDNS updates are enabled. For obvious reasons, we cannot supply a meaningful default.

"Dhcp4d": {
"ddns-qualifying-suffix": "foo.example.org",

When generating a name, kea-dhcp4 constructs the name in the format:
[ddns-generated-prefix]-[address-text]. [ddns-qualifying-suffix].

where address-text is simply the lease IP address converted to a hyphenated string. For example, if the lease address
is 172.16.1.10, the qualifying suffix is "example.com", and the default value is used for ddns-generated-prefix,
the generated FQDN is:

myhost-172-16-1-10.example.com.

8.2.19.4 Sanitizing Client Host Name and FQDN Names

Some DHCP clients may provide values in the Host Name option (option code 12) or FQDN option (option code 81)
that contain undesirable characters. It is possible to configure kea-dhcp4 to sanitize these values. The most typical
use case is ensuring that only characters that are permitted by RFC 1035 be included: A-Z, a-z, 0-9, and "-". This may
be accomplished with the following two parameters:

* hostname-char-set - a regular expression describing the invalid character set. This can be any valid, regular
expression using POSIX extended expression syntax. Embedded nulls (0x00) are always considered an invalid
character to be replaced (or omitted). The defaultis "[AA-Za-z0-9.-]". This matches any character that is not
a letter, digit, dot, hyphen, or null.

* hostname-char-replacement - a string of zero or more characters with which to replace each invalid character
in the host name. An empty string causes invalid characters to be OMITTED rather than replaced. The default
iS mnn .

The following configuration replaces anything other than a letter, digit, dot, or hyphen with the letter "x":

"Dhcp4": {
"hostname-char-set": "[*A-Za-z0-9.-1",
"hostname-char-replacement": "x",

3

Thus, a client-supplied value of "myhost-$[123.0org" would become "myhost-xx123.org". Sanitizing is performed only
on the portion of the name supplied by the client, and it is performed before applying a qualifying suffix (if one is
defined and needed).

Note: Name sanitizing is meant to catch the more common cases of invalid characters through a relatively simple
character-replacement scheme. It is difficult to devise a scheme that works well in all cases, for both Host Name and
FQDN options. Administrators who find they have clients with odd corner cases of character combinations that cannot

108 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

be readily handled with this mechanism should consider writing a hook that can carry out sufficiently complex logic to
address their needs.

If clients include domain names in the Host Name option and the administrator wants these preserved, they need
to make sure that the dot, ".", is considered a valid character by the hostname-char-set expression, such as this:
"[AA-Za-z0-9.-]1". This does not affect dots in FQDN Option values. When scrubbing FQDNSs, dots are treated as

delimiters and used to separate the option value into individual domain labels that are scrubbed and then re-assembled.

If clients are sending values that differ only by characters considered as invalid by the hostname-char-set, be aware
that scrubbing them will yield identical values. In such cases, DDNS conflict rules will permit only one of them to
register the name.

Finally, given the latitude clients have in the values they send, it is virtually impossible to guarantee that a combination
of these two parameters will always yield a name that is valid for use in DNS. For example, using an empty value for
hostname-char-replacement could yield an empty domain label within a name, if that label consists only of invalid
characters.

Note: Itis possible to specify hostname-char-set and/or hostname-char-replacement at the global scope. This
allows host names to be sanitized without requiring a dhcp-ddns entry. When a hostname-char parameter is defined
at both the global scope and in a dhcp-ddns entry, the second (local) value is used.

8.2.20 Next Server (siaddr)

In some cases, clients want to obtain configuration from a TFTP server. Although there is a dedicated option for it, some
devices may use the siaddr field in the DHCPv4 packet for that purpose. That specific field can be configured using
the next-server directive. It is possible to define it in the global scope or for a given subnet only. If both are defined,
the subnet value takes precedence. The value in the subnet can be set to "0.0.0.0", which means that next-server
should not be sent. It can also be set to an empty string, which is equivalent to it not being defined at all; that is, it uses
the global value.

The server-hostname (which conveys a server hostname, can be up to 64 bytes long, and is in the sname field) and
boot-file-name (which conveys the configuration file, can be up to 128 bytes long, and is sent using the file field)
directives are handled the same way as next-server.

"Dhcp4": {
"next-server": "192.0.2.123",
"boot-file-name": "/dev/null",
"subnet4": [

{
"next-server": "192.0.2.234",
"server-hostname": "some-name.example.org",
"boot-file-name": "bootfile.efi",

}

8.2. DHCPv4 Server Configuration 109

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.2.21 Echoing Client-ID (RFC 6842)

The original DHCPv4 specification (RFC 2131) states that the DHCPv4 server must not send back client-id options
when responding to clients. However, in some cases that results in confused clients that do not have a MAC address or
client-id; see RFC 6842 for details. That behavior changed with the publication of RFC 6842, which updated RFC 2131.
That update states that the server must send the client-id if the client sent it, and that is Kea's default behavior. However,
in some cases older devices that do not support RFC 6842 may refuse to accept responses that include the client-id
option. To enable backward compatibility, an optional configuration parameter has been introduced. To configure it,
use the following configuration statement:

"Dhcp4": {
"echo-client-id": false,

8.2.22 Using Client Identifier and Hardware Address

The DHCP server must be able to identify the client from which it receives the message and distinguish it from other
clients. There are many reasons why this identification is required; the most important ones are:

* When the client contacts the server to allocate a new lease, the server must store the client identification infor-
mation in the lease database as a search key.

* When the client tries to renew or release the existing lease, the server must be able to find the existing lease entry
in the database for this client, using the client identification information as a search key.

» Some configurations use static reservations for the IP addresses and other configuration information. The server's
administrator uses client identification information to create these static assignments.

¢ In dual-stack networks there is often a need to correlate the lease information stored in DHCPv4 and DHCPv6
servers for a particular host. Using common identification information by the DHCPv4 and DHCPv6 clients
allows the network administrator to achieve this correlation and better administer the network. Beginning with
release 2.1.2, Kea supports DHCPv6 DUIDs embedded within DHCPv4 Client Identifier options as described
in RFC 4361.

DHCPv4 uses two distinct identifiers which are placed by the client in the queries sent to the server and copied by the
server to its responses to the client: chaddr and client-identifier. The former was introduced as a part of the
BOOTP specification and it is also used by DHCP to carry the hardware address of the interface used to send the query
to the server (MAC address for the Ethernet). The latter is carried in the client-identifier option, introduced in RFC
2132.

RFC 2131 indicates that the server may use both of these identifiers to identify the client but the client identifier, if
present, takes precedence over chaddr. One of the reasons for this is that the client identifier is independent from the
hardware used by the client to communicate with the server. For example, if the client obtained the lease using one
network card and then the network card is moved to another host, the server will wrongly identify this host as the one
which obtained the lease. Moreover, RFC 4361 gives the recommendation to use a DUID (see RFC 8415, the DHCPv6
specification) carried as a client identifier when dual-stack networks are in use to provide consistent identification
information for the client, regardless of the type of protocol it is using. Kea adheres to these specifications, and the
client identifier by default takes precedence over the value carried in the chaddr field when the server searches, creates,
updates, or removes the client's lease.

When the server receives a DHCPDISCOVER or DHCPREQUEST message from the client, it tries to find out if the
client already has a lease in the database; if it does, the server hands out that lease rather than allocates a new one.
Each lease in the lease database is associated with the client identifier and/or chaddr. The server first uses the client
identifier (if present) to search for the lease; if one is found, the server treats this lease as belonging to the client, even
if the current chaddr and the chaddr associated with the lease do not match. This facilitates the scenario when the

110 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc6842
https://tools.ietf.org/html/rfc4361
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2132
https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc4361
https://tools.ietf.org/html/rfc8415

Kea Administrator Reference Manual Documentation, Release 2.4.0

network card on the client system has been replaced and thus the new MAC address appears in the messages sent by
the DHCP client. If the server fails to find the lease using the client identifier, it performs another lookup using the
chaddr. If this lookup returns no result, the client is considered to not have a lease and a new lease is created.

A common problem reported by network operators is that poor client implementations do not use stable client identifiers,
instead generating a new client identifier each time the client connects to the network. Another well-known case is when
the client changes its client identifier during the multi-stage boot process (PXE). In such cases, the MAC address of the
client's interface remains stable, and using the chaddr field to identify the client guarantees that the particular system
is considered to be the same client, even though its client identifier changes.

To address this problem, Kea includes a configuration option which enables client identification using chaddr only.
This instructs the server to ignore the client identifier during lease lookups and allocations for a particular subnet.
Consider the following simplified server configuration:

{
"Dhcp4": {
"match-client-id": true,
"subnet4": [
{
"id": 1,
"subnet": "192.0.10.0/24",
"pools": [{ "pool": "192.0.2.23-192.0.2.87" } 1,
"match-client-id": false
Fo
{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.23-10.0.2.99" } 1]
}
]
}
}

The match-client-id parameter is a boolean value which controls this behavior. The default value of true indicates
that the server will use the client identifier for lease lookups and chaddr if the first lookup returns no results. false
means that the server will only use the chaddr to search for the client's lease. Whether the DHCID for DNS updates
is generated from the client identifier or chaddr is controlled through the same parameter.

The match-client-id parameter may appear both in the global configuration scope and/or under any subnet dec-
laration. In the example shown above, the effective value of the match-client-id will be false for the subnet
192.0.10.0/24, because the subnet-specific setting of the parameter overrides the global value of the parameter. The
effective value of the match-client-id for the subnet 10.0.0.0/8 will be set to true, because the subnet declaration
lacks this parameter and the global setting is by default used for this subnet. In fact, the global entry for this parameter
could be omitted in this case, because true is the default value.

It is important to understand what happens when the client obtains its lease for one setting of the match-client-id
and then renews it when the setting has been changed. First, consider the case when the client obtains the lease and the
match-client-id is set to true. The server stores the lease information, including the client identifier (if supplied)
and chaddr, in the lease database. When the setting is changed and the client renews the lease, the server will determine
that it should use the chaddr to search for the existing lease. If the client has not changed its MAC address, the server
should successfully find the existing lease. The client identifier associated with the returned lease will be ignored and
the client will be allowed to use this lease. When the lease is renewed only the chaddr will be recorded for this lease,
according to the new server setting.

In the second case, the client has the lease with only a chaddr value recorded. When the match-client-id setting is
changed to true, the server will first try to use the client identifier to find the existing client's lease. This will return no
results because the client identifier was not recorded for this lease. The server will then use the chaddr and the lease

8.2. DHCPv4 Server Configuration 111

Kea Administrator Reference Manual Documentation, Release 2.4.0

will be found. If the lease appears to have no client identifier recorded, the server will assume that this lease belongs
to the client and that it was created with the previous setting of the match-client-id. However, if the lease contains
a client identifier which is different from the client identifier used by the client, the lease will be assumed to belong to
another client and a new lease will be allocated.

8.2.23 Authoritative DHCPv4 Server Behavior

The original DHCPv4 specification (RFC 2131) states that if a client requests an address in the INIT-REBOOT state of
which the server has no knowledge, the server must remain silent, except if the server knows that the client has requested
an IP address from the wrong network. By default, Kea follows the behavior of the ISC dhcpd daemon instead of the
specification and also remains silent if the client requests an IP address from the wrong network, because configuration
information about a given network segment is not known to be correct. Kea only rejects a client's DHCPREQUEST
with a DHCPNAK message if it already has a lease for the client with a different IP address. Administrators can override
this behavior through the boolean authoritative (false by default) setting.

In authoritative mode, authoritative set to true, Kea always rejects INIT-REBOOT requests from unknown clients
with DHCPNAK messages. The authoritative setting can be specified in global, shared-network, and subnet con-
figuration scope and is automatically inherited from the parent scope, if not specified. All subnets in a shared-network
must have the same authoritative setting.

8.2.24 DHCPv4-over-DHCPv6: DHCPv4 Side

The support of DHCPv4-over-DHCPvVG6 transport is described in RFC 7341 and is implemented using cooperating
DHCPv4 and DHCPv6 servers. This section is about the configuration of the DHCPv4 side (the DHCPv6 side is
described in DHCPv4-over-DHCPv6: DHCPv6 Side).

Note: DHCPv4-over-DHCPvO6 support is experimental and the details of the inter-process communication may change;
for instance, the support of port relay (RFC 8357) introduced an incompatible change. Both the DHCPv4 and DHCPv6
sides should be running the same version of Kea.

The dhcp4o6-port global parameter specifies the first of the two consecutive ports of the UDP sockets used for the
communication between the DHCPv6 and DHCPv4 servers. The DHCPv4 server is bound to ::1 on port + 1 and
connected to ::1 on port.

With DHCPv4-over-DHCPv6, the DHCPv4 server does not have access to several of the identifiers it would normally
use to select a subnet. To address this issue, three new configuration entries are available; the presence of any of these
allows the subnet to be used with DHCPv4-over-DHCPv6. These entries are:

* 406-subnet: takes a prefix (i.e., an IPv6 address followed by a slash and a prefix length) which is matched
against the source address.

* 406-interface-id: takes a relay interface ID option value.
* 406-interface: takes an interface name which is matched against the incoming interface name.

ISC tested the following configuration:

{

DHCPv4 conf
"Dhcp4": {

"interfaces-config": {
"interfaces": ["eno33554984"]

(continues on next page)

112 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc2131
https://tools.ietf.org/html/rfc7341

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

o

"lease-database": {
"type": "memfile",
"name": "leases4"

}1
"valid-lifetime": 4000,

"subnet4": [

{

"id": 1,

"subnet": "10.10.10.0/24",

"406-interface": "eno33554984",

"406-subnet": "2001:db8:1:1::/64",

"pools": [{ "pool": "10.10.10.100 - 10.10.10.199" }]
}
1,

"dhcp4o06-port": 6767,

"loggers": [
{
"name": "kea-dhcp4",
"output_options": [
{
"output": "/tmp/kea-dhcp4.log"
}
ie
"severity": "DEBUG",
"debuglevel™: 0

8.2.25 Sanity Checks in DHCPv4

An important aspect of a well-running DHCP system is an assurance that the data remains consistent; however, in some
cases it may be convenient to tolerate certain inconsistent data. For example, a network administrator who temporarily
removes a subnet from a configuration would not want all the leases associated with it to disappear from the lease
database. Kea has a mechanism to implement sanity checks for situations like this.

Kea supports a configuration scope called sanity-checks. A parameter, called lease-checks, governs the veri-
fication carried out when a new lease is loaded from a lease file. This mechanism permits Kea to attempt to correct
inconsistent data.

Every subnet has a subnet-id value; this is how Kea internally identifies subnets. Each lease has a subnet-id
parameter as well, which identifies the subnet it belongs to. However, if the configuration has changed, it is possible
that a lease could exist with a subnet-id but without any subnet that matches it. Also, it is possible that the subnet's
configuration has changed and the subnet-id now belongs to a subnet that does not match the lease.

8.2. DHCPv4 Server Configuration 113

Kea Administrator Reference Manual Documentation, Release 2.4.0

Kea's corrective algorithm first checks to see if there is a subnet with the subnet-id specified by the lease. If there
is, it verifies whether the lease belongs to that subnet. If not, depending on the lease-checks setting, the lease is
discarded, a warning is displayed, or a new subnet is selected for the lease that matches it topologically.

There are five levels which are supported:
* none - do no special checks; accept the lease as is.
* warn - if problems are detected display a warning, but accept the lease data anyway. This is the default value.

» fix - if a datainconsistency is discovered, try to correct it. If the correction is not successful, insert the incorrect
data anyway.

e fix-del - if a data inconsistency is discovered, try to correct it. If the correction is not successful, reject the
lease. This setting ensures the data's correctness, but some incorrect data may be lost. Use with care.

 del - if any inconsistency is detected, reject the lease. This is the strictest mode; use with care.

This feature is currently implemented for the memfile backend. The sanity check applies to the lease database in
memory, not to the lease file, i.e. inconsistent leases will stay in the lease file.

An example configuration that sets this parameter looks as follows:

"Dhcp4d": {
"sanity-checks": {
"lease-checks": "fix-del"
}1
}

8.2.26 Storing Extended Lease Information

To support such features as DHCP Leasequery (RFC 4388), additional information must be stored with each lease.
Because the amount of information for each lease has ramifications in terms of performance and system resource
consumption, storage of this additional information is configurable through the store-extended-info parameter. It
defaults to false and may be set at the global, shared-network, and subnet levels.

"Dhcp4": {
"store-extended-info": true,

When set to true, information relevant to the DHCPREQUEST asking for the lease is added into the lease's user-
context as a map element labeled "ISC". Since Kea version 2.3.2, when the DHCPREQUEST received contains the
option (DHCP Option 82), the map contains the relay-agent-info map with the content option (DHCP Option 82)
in the sub-options entry and, when present, the remote-id and relay-id options. Since DHCPREQUESTS sent
as renewals are not likely to contain this information, the values taken from the last DHCPREQUEST that did contain
it are retained on the lease. The lease's user-context looks something like this:

[{ "ISC": { "relay-agent-info": { "sub-options": "0x0104AABBCCDD" } } }

Or with remote and relay sub-options:

{
"ISC": {
"relay-agent-info": {
"sub-options": "0x02030102030CO3AABBCC",

(continues on next page)

114 Chapter 8. The DHCPv4 Server

https://tools.ietf.org/html/rfc4388

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"remote-id": "03010203",
"relay-id": "AABBCC"

Note: It is possible that other hook libraries are already using user-context. Enabling store-extended-info
should not interfere with any other user-context content, as long as it does not also use an element labeled "ISC".
In other words, user-context is intended to be a flexible container serving multiple purposes. As long as no other
purpose also writes an "ISC" element to user-context there should not be a conflict.

Extended lease information is also subject to configurable sanity checking. The parameter in the sanity-checks
scope is named extended-info-checks and supports these levels:

* none - do no check nor upgrade. This level should be used only when extended info is not used at all or when
no badly formatted extended info, including using the old format, is expected.

e fix - fix some common inconsistencies and upgrade extended info using the old format to the new one. It is the
default level and is convenient when the Leasequery hook library is not loaded.

e strict - fix all inconsistencies which have an impact on the (Bulk) Leasequery hook library.

* pedantic - enforce full conformance to the format produced by the Kea code; for instance, no extra entries are
allowed with the exception of comment.

Note: This feature is currently implemented only for the memfile backend. The sanity check applies to the lease
database in memory, not to the lease file, i.e. inconsistent leases stay in the lease file.

8.2.27 Multi-Threading Settings

The Kea server can be configured to process packets in parallel using multiple threads. These settings can be found
under the multi-threading structure and are represented by:

* enable-multi-threading - use multiple threads to process packets in parallel. The default is true.

e thread-pool-size - specify the number of threads to process packets in parallel. It may be set to ® (auto-
detect), or any positive number that explicitly sets the thread count. The default is 0.

* packet-queue-size - specify the size of the queue used by the thread pool to process packets. It may be set to
® (unlimited), or any positive number that explicitly sets the queue size. The default is 64.

An example configuration that sets these parameters looks as follows:

"Dhcp4": {

"multi-threading": {
"enable-multi-threading": true,
"thread-pool-size": 4,
"packet-queue-size": 16

b,

8.2. DHCPv4 Server Configuration 115

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.2.28 Multi-Threading Settings With Different Database Backends

The Kea DHCPv4 server is benchmarked by ISC to determine which settings give the best performance. Although
this section describes our results, they are merely recommendations and are very dependent on the particular hardware
used for benchmarking. We strongly advise that administrators run their own performance benchmarks.

A full report of performance results for the latest stable Kea version can be found here. This includes hardware and
benchmark scenario descriptions, as well as current results.

After enabling multi-threading, the number of threads is set by the thread-pool-size parameter. Results from our
experiments show that the best settings for kea-dhcp4 are:

e thread-pool-size: 4 when using memfile for storing leases.
* thread-pool-size: 12 or more when using mysql for storing leases.
* thread-pool-size: 8§ when using postgresql.

Another very important parameter is packet-queue-size; in our benchmarks we used it as a multiplier of
thread-pool-size. The actual setting strongly depends on thread-pool-size.

We saw the best results in our benchmarks with the following settings:

e packet-queue-size: 7 * thread-pool-size when using memfile for storing leases; in our case it was 7 *
4 = 28. This means that at any given time, up to 28 packets could be queued.

* packet-queue-size: 66 * thread-pool-size when using mysql for storing leases; in our case it was 66 *
12 =792. This means that up to 792 packets could be queued.

* packet-queue-size: 11 * thread-pool-size when using postgresql for storing leases; in our case it was
11 *8=288.

8.2.29 IPv6-Only Preferred Networks

RFC8925, recently published by the IETF, specifies a DHCPv4 option to indicate that a host supports an IPv6-only
mode and is willing to forgo obtaining an IPv4 address if the network provides IPv6 connectivity. The general idea is
that a network administrator can enable this option to signal to compatible dual-stack devices that IPv6 connectivity is
available and they can shut down their IPv4 stack. The new option v6-only-preferred content is a 32-bit unsigned
integer and specifies for how long the device should disable its stack. The value is expressed in seconds.

The RFC mentions the V60NLY_WAIT timer. This is implemented in Kea by setting the value of the
v6-only-preferred option. This follows the usual practice of setting options; the option value can be specified
on the pool, subnet, shared network, or global levels, or even via host reservations.

There is no special processing involved; it follows the standard Kea option processing regime. The option is not sent
back unless the client explicitly requests it. For example, to enable the option for the whole subnet, the following
configuration can be used:

{
"subnet4": [
{
"id": 1,
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"option-data": [
{
// This will make the v6-only capable devices to disable their
// v4 stack for half an hour and then try again

(continues on next page)

116 Chapter 8. The DHCPv4 Server

https://reports.kea.isc.org/
https://tools.ietf.org/html/rfc8925

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"name": "v6-only-preferred",
"data": "1800"

8.2.30 Lease Caching

Clients that attempt multiple renewals in a short period can cause the server to update and write to the database fre-
quently, resulting in a performance impact on the server. The cache parameters instruct the DHCP server to avoid
updating leases too frequently, thus avoiding this behavior. Instead, the server assigns the same lease (i.e. reuses it)
with no modifications except for CLTT (Client Last Transmission Time), which does not require disk operations.

The two parameters are the cache-threshold double and the cache-max-age integer; they have no default setting,
i.e. the lease caching feature must be explicitly enabled. These parameters can be configured at the global, shared-
network, and subnet levels. The subnet level has precedence over the shared-network level, while the global level is
used as a last resort. For example:

{
"subnet4": [
{
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" }],
"subnet": "192.0.2.0/24",
"cache-threshold": .25,
"cache-max-age": 600,
"valid-lifetime": 2000,
}
1,
}

When an already-assigned lease can fulfill a client query:

* any important change, e.g. for DDNS parameter, hostname, or valid lifetime reduction, makes the lease not
reusable.

* lease age, i.e. the difference between the creation or last modification time and the current time, is computed
(elapsed duration).

* if cache-max-age is explicitly configured, it is compared with the lease age; leases that are too old are not
reusable. This means that the value O for cache-max-age disables the lease cache feature.

« if cache-threshold is explicitly configured and is between 0.0 and 1.0, it expresses the percentage of the lease
valid lifetime which is allowed for the lease age. Values below and including 0.0 and values greater than 1.0
disable the lease cache feature.

In our example, a lease with a valid lifetime of 2000 seconds can be reused if it was committed less than 500 seconds
ago. With a lifetime of 3000 seconds, a maximum age of 600 seconds applies.

In outbound client responses (e.g. DHCPACK messages), the dhcp-lease-time option is set to the reusable valid
lifetime, i.e. the expiration date does not change. Other options based on the valid lifetime e.g. dhcp-renewal-time

8.2. DHCPv4 Server Configuration 117

Kea Administrator Reference Manual Documentation, Release 2.4.0

and dhcp-rebinding-time, also depend on the reusable lifetime.

8.2.31 Temporary Allocation on DHCPDISCOVER

By default, kea-dhcp4 does not allocate or store a lease when offering an address to a client in response to a DHCPDIS-
COVER. In general, kea-dhcp4 can fulfill client demands faster by deferring lease allocation and storage until it re-
ceives DHCPREQUESTs for them. Release 2.3.6 added a new parameter to kea-dhcp4, offer-lifetime, which
(when not zero) instructs the server to allocate and persist a lease when generating a DHCPOFFER. In addition:

» The persisted lease's lifetime is equal to offer-1ifetime (in seconds).

* The lifetime sent to the client in the DHCPOFFER via option 51 is still based on valid-1ifetime. This avoids
issues with clients that may reject offers whose lifetimes they perceive as too short.

* DDNS updates are not performed. As with the default behavior, those updates occur on DHCPREQUEST.
e Updates are not sent to HA peers.
» Assigned lease statistics are incremented.

 Expiration processing and reclamation behave just as they do for leases allocated during DHCPREQUEST pro-
cessing.

* Lease caching, if enabled, is honored.

* In sites running multiple instances of kea-dhcp4 against a single, shared lease store, races for given address
values are lost during DHCPDISCOVER processing rather than during DHCPREQUEST processing. Servers
that lose the race for the address simply do not respond to the client, rather than NAK them. The client in turn
simply retries its DHCPDISCOVER. This should reduce the amount of traffic such conflicts incur.

* Clients repeating DHCPDISCOVERS are offered the same address each time.

An example subnet configuration is shown below:

{
"subnet4": [
{
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"offer-lifetime": 60,
"valid-lifetime": 2000,
3
1,
}

Here offer-1ifetime has been configured to be 60 seconds, with a valid-1ifetime of 2000 seconds. This instructs
kea-dhcp4 to persist leases for 60 seconds when sending them back in DHCPOFFERS, and then extend them to 2000
seconds when clients DHCPREQUEST them.

The value, which defaults to 0, is supported at the global, shared-network, subnet, and class levels. Choosing an
appropriate value for offer-lifetime is extremely site-dependent, but a value between 60 and 120 seconds is a
reasonable starting point.

118 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.3 Host Reservations in DHCPv4

There are many cases where it is useful to provide a configuration on a per-host basis. The most obvious one is to
reserve a specific, static address for exclusive use by a given client (host); the returning client receives the same address
from the server every time, and other clients generally do not receive that address. Host reservations are also convenient
when a host has specific requirements, e.g. a printer that needs additional DHCP options. Yet another possible use
case is to define unique names for hosts.

There may be cases when a new reservation has been made for a client for an address currently in use by another client.
We call this situation a "conflict." These conflicts get resolved automatically over time, as described in subsequent
sections. Once a conflict is resolved, the correct client will receive the reserved configuration when it renews.

Host reservations are defined as parameters for each subnet. Each host must have its own unique identifier, such as the
hardware/MAC address. There is an optional reservations array in the subnet4 structure; each element in that array
is a structure that holds information about reservations for a single host. In particular, the structure has an identifier
that uniquely identifies a host. In the DHCPv4 context, the identifier is usually a hardware or MAC address. In most
cases an IP address will be specified. It is also possible to specify a hostname, host-specific options, or fields carried
within the DHCPv4 message such as siaddr, sname, or file.

Note: The reserved address must be within the subnet.

The following example shows how to reserve addresses for specific hosts in a subnet:

{
"subnet4": [
{
"id": 1,
"pools": [{ "pool": "192.0.2.1 - 192.0.2.200" } 1,
"subnet": "192.0.2.0/24",
"interface": "eth0®",
"reservations": [
{
"hw-address": "la:1lb:1c:1d:1le:1£f",
"ip-address": "192.0.2.202"
e
{
"duid": "0a:0b:0c:0d:0e:0f",
"ip-address": "192.0.2.100",
"hostname": "alice-laptop"
e
{
"circuit-id": "'charter950'",
"ip-address": "192.0.2.203"
e
{
"client-id": "®1:11:22:33:44:55:66",
"ip-address": "192.0.2.204"
}
]
}
1,
}

8.3. Host Reservations in DHCPv4 119

Kea Administrator Reference Manual Documentation, Release 2.4.0

The first entry reserves the 192.0.2.202 address for the client that uses a MAC address of 1a:1b:1c:1d:1e:1f. The second
entry reserves the address 192.0.2.100 and the hostname of "alice-laptop" for the client using a DUID 0a:0b:0c:0d:0e:0f.
(If DNS updates are planned, it is strongly recommended that the hostnames be unique.) The third example reserves
address 192.0.3.203 for a client whose request would be relayed by a relay agent that inserts a circuit-id option with
the value "charter950". The fourth entry reserves address 192.0.2.204 for a client that uses a client identifier with value
01:11:22:33:44:55:66.

The above example is used for illustrational purposes only; in actual deployments it is recommended to use as few types
as possible (preferably just one). See Fine-Tuning DHCPv4 Host Reservation for a detailed discussion of this point.

Making a reservation for a mobile host that may visit multiple subnets requires a separate host definition in each subnet
that host is expected to visit. It is not possible to define multiple host definitions with the same hardware address in a
single subnet. Multiple host definitions with the same hardware address are valid if each is in a different subnet.

Adding host reservations incurs a performance penalty. In principle, when a server that does not support host reservation
responds to a query, it needs to check whether there is a lease for a given address being considered for allocation or
renewal. The server that does support host reservation has to perform additional checks: not only whether the address
is currently used (i.e., if there is a lease for it), but also whether the address could be used by someone else (i.e., if there
is a reservation for it). That additional check incurs extra overhead.

8.3.1 Address Reservation Types

In a typical Kea scenario there is an IPv4 subnet defined, e.g. 192.0.2.0/24, with a certain part of it dedicated for
dynamic allocation by the DHCPv4 server. That dynamic part is referred to as a dynamic pool or simply a pool. In
principle, a host reservation can reserve any address that belongs to the subnet. The reservations that specify addresses
that belong to configured pools are called "in-pool reservations." In contrast, those that do not belong to dynamic pools
are called "out-of-pool reservations." There is no formal difference in the reservation syntax and both reservation types
are handled uniformly.

Kea supports global host reservations. These are reservations that are specified at the global level within the configu-
ration and that do not belong to any specific subnet. Kea still matches inbound client packets to a subnet as before, but
when the subnet's reservation mode is set to "global", Kea looks for host reservations only among the global reserva-
tions defined. Typically, such reservations would be used to reserve hostnames for clients which may move from one
subnet to another.

Note: Global reservations, while useful in certain circumstances, have aspects that must be given due consideration
when using them. Please see Conflicts in DHCPv4 Reservations for more details.

Note: Since Kea 1.9.1, reservation mode has been replaced by three boolean flags, reservations-global,
reservations-in-subnet, and reservations-out-of-pool, which allow the configuration of host reservations
both globally and in a subnet. In such cases a subnet host reservation has preference over a global reservation when
both exist for the same client.

120 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.3.2 Conflicts in DHCPv4 Reservations

As reservations and lease information are stored separately, conflicts may arise. Consider the following series of events:
the server has configured the dynamic pool of addresses from the range of 192.0.2.10 to 192.0.2.20. Host A requests
an address and gets 192.0.2.10. Now the system administrator decides to reserve address 192.0.2.10 for Host B. In
general, reserving an address that is currently assigned to someone else is not recommended, but there are valid use
cases where such an operation is warranted.

The server now has a conflict to resolve. If Host B boots up and requests an address, the server cannot immediately
assign the reserved address 192.0.2.10. A naive approach would to be immediately remove the existing lease for Host A
and create a new one for Host B. That would not solve the problem, though, because as soon as Host B gets the address,
it will detect that the address is already in use (by Host A) and will send a DHCPDECLINE message. Therefore, in
this situation, the server has to temporarily assign a different address from the dynamic pool (not matching what has
been reserved) to Host B.

When Host A renews its address, the server will discover that the address being renewed is now reserved for another
host - Host B. The server will inform Host A that it is no longer allowed to use it by sending a DHCPNAK message.
The server will not remove the lease, though, as there's a small chance that the DHCPNAK will not be delivered if the
network is lossy. If that happens, the client will not receive any responses, so it will retransmit its DHCPREQUEST
packet. Once the DHCPNAK is received by Host A, it will revert to server discovery and will eventually get a different
address. Besides allocating a new lease, the server will also remove the old one. As a result, address 192.0.2.10 will
become free.

When Host B tries to renew its temporarily assigned address, the server will detect that it has a valid lease, but will note
that there is a reservation for a different address. The server will send DHCPNAK to inform Host B that its address is
no longer usable, but will keep its lease (again, the DHCPNAK may be lost, so the server will keep it until the client
returns for a new address). Host B will revert to the server discovery phase and will eventually send a DHCPREQUEST
message. This time the server will find that there is a reservation for that host and that the reserved address 192.0.2.10 is
not used, so it will be granted. It will also remove the lease for the temporarily assigned address that Host B previously
obtained.

This recovery will succeed, even if other hosts attempt to get the reserved address. If Host C requests the address
192.0.2.10 after the reservation is made, the server will either offer a different address (when responding to DHCPDIS-
COVER) or send DHCPNAK (when responding to DHCPREQUEST).

This mechanism allows the server to fully recover from a case where reservations conflict with existing leases; however,
this procedure takes roughly as long as the value set for renew-timer. The best way to avoid such a recovery is not to
define new reservations that conflict with existing leases. Another recommendation is to use out-of-pool reservations;
if the reserved address does not belong to a pool, there is no way that other clients can get it.

Note: The conflict-resolution mechanism does not work for global reservations. Although the global address reserva-
tions feature may be useful in certain settings, it is generally recommended not to use global reservations for addresses.
Administrators who do choose to use global reservations must manually ensure that the reserved addresses are not in
dynamic pools.

8.3. Host Reservations in DHCPv4 121

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.3.3 Reserving a Hosthame

When the reservation for a client includes the hostname, the server returns this hostname to the client in the Client
FQDN or Hostname option. The server responds with the Client FQDN option only if the client has included the
Client FQDN option in its message to the server. The server responds with the Hostname option if the client included
the Hostname option in its message to the server, or if the client requested the Hostname option using the Parameter
Request List option. The server returns the Hostname option even if it is not configured to perform DNS updates. The
reserved hostname always takes precedence over the hostname supplied by the client or the autogenerated (from the
IPv4 address) hostname.

The server qualifies the reserved hostname with the value of the ddns-qualifying-suffix parameter. For example,
the following subnet configuration:

{
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.10-10.0.0.100" } 1],
"ddns-qualifying-suffix": "example.isc.org.",
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "alice-laptop"
}
]
}
1,
"dhcp-ddns": {
"enable-updates": true
1
}

will result in the "alice-laptop.example.isc.org." hostname being assigned to the client using the MAC address
"aa:bb:cc:dd:ee:ff". If the ddns-qualifying-suffix is not specified, the default (empty) value will be used, and
in this case the value specified as a hostname will be treated as a fully qualified name. Thus, by leaving the
ddns-qualifying-suffix empty itis possible to qualify hostnames for different clients with different domain names:

{
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.10-10.0.0.100" } 1],
"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "alice-laptop.isc.org."
Fe
{
"hw-address": "12:34:56:78:99:AA",
"hostname": "mark-desktop.example.org."
}

(continues on next page)

122 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

3

i

"dhcp-ddns": {
"enable-updates": true

}

}

The above example results in the assignment of the "alice-laptop.isc.org." hostname to the client using the MAC
address "aa:bb:cc:dd:ee:ff", and the hostname "mark-desktop.example.org." to the client using the MAC address
"12:34:56:78:99:AA".

8.3.4 Including Specific DHCPv4 Options in Reservations

Kea offers the ability to specify options on a per-host basis. These options follow the same rules as any other options.
These can be standard options (see Standard DHCPv4 Options), custom options (see Custom DHCPv4 Options), or
vendor-specific options (see DHCPv4 Vendor-Specific Options). The following example demonstrates how standard
options can be defined:

{
"subnet4": [
{
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"ip-address": "192.0.2.1",
"option-data": [
{
"name": "cookie-servers",
"data": "10.1.1.202,10.1.1.203"
e
{
"name": "log-servers",
"data": "10.1.1.200,10.1.1.201"
}
1
}
Jg
}
1,
}

Vendor-specific options can be reserved in a similar manner:

{
"subnet4": [
{
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"ip-address": "10.0.0.7",

(continues on next page)

8.3. Host Reservations in DHCPv4 123

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"option-data": [

{
"name": "vivso-suboptions",
"data": "4491"
e
{
"name": "tftp-servers",
"space": "vendor-4491",
"data": "10.1.1.202,10.1.1.203"
}
]
}
ie
}
1,

¥

Options defined at the host level have the highest priority. In other words, if there are options defined with the same
type on the global, subnet, class, and host levels, the host-specific values are used.

8.3.5 Reserving Next Server, Server Hosthame, and Boot File Name

BOOTP/DHCPv4 messages include "siaddr", "sname", and "file" fields. Even though DHCPv4 includes correspond-
ing options, such as option 66 and option 67, some clients may not support these options. For this reason, server
administrators often use the "siaddr", "sname", and "file" fields instead.

With Kea, it is possible to make static reservations for these DHCPv4 message fields:

{
"subnet4": [
{
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"next-server": "10.1.1.2",
"server-hostname": "server-hostname.example.org",
"boot-file-name": "/tmp/bootfile.efi"
}
ie
}
1,
}

Note that those parameters can be specified in combination with other parameters for a reservation, such as a reserved
IPv4 address. These parameters are optional; a subset of them can be specified, or all of them can be omitted.

124 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.3.6 Reserving Client Classes in DHCPv4

Using Expressions in Classification explains how to configure the server to assign classes to a client, based on the
content of the options that this client sends to the server. Host reservation mechanisms also allow for the static as-
signment of classes to clients. The definitions of these classes are placed in the Kea configuration file or a database.
The following configuration snippet shows how to specify that a client belongs to the classes reserved-classl and
reserved-class2. Those classes are associated with specific options sent to the clients which belong to them.

{

"client-classes": [

{
"name": "reserved-classl",
"option-data": [
{
"name": "routers",
"data": "10.0.0.200"
}
1
3
{
"name": "reserved-class2",
"option-data": [
{
"name": "domain-name-servers",
"data": "10.0.0.201"
}
]
}
1,
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/24",
"pools": [{ "pool": "10.0.0.10-10.0.0.100" }],
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:ff",
"client-classes": ["reserved-classl", "reserved-class2"]
}
]
}
]

In some cases the host reservations can be used in conjunction with client classes specified within the Kea configuration.
In particular, when a host reservation exists for a client within a given subnet, the "KNOWN" built-in class is assigned
to the client. Conversely, when there is no static assignment for the client, the "UNKNOWN" class is assigned to the
client. Class expressions within the Kea configuration file can refer to "KNOWN" or "UNKNOWN" classes using the
"member" operator. For example:

{

"client-classes": [
(continues on next page)

8.3. Host Reservations in DHCPv4 125

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

{
"name": "dependent-class",
"test": "member ('KNOWN')",
"only-if-required": true

}

The only-if-required parameter is needed here to force evaluation of the class after the lease has been allocated
and thus the reserved class has been also assigned.

Note: The classes specified in non-global host reservations are assigned to the processed packet after all classes with
the only-if-required parameter set to false have been evaluated. This means that these classes must not depend
on the statically assigned classes from the host reservations. If such a dependency is needed, the only-if-required
parameter must be set to true for the dependent classes. Such classes are evaluated after the static classes have
been assigned to the packet. This, however, imposes additional configuration overhead, because all classes marked
as only-if-required must be listed in the require-client-classes list for every subnet where they are used.

Note: Client classes specified within the Kea configuration file may depend on the classes specified within the global
host reservations. In such a case the only-if-required parameter is not needed. Refer to Pool Selection with Client
Class Reservations and Subnet Selection with Client Class Reservations for specific use cases.

8.3.7 Storing Host Reservations in MySQL or PostgreSQL

Kea can store host reservations in MySQL or PostgreSQL. See Hosts Storage for information on how to configure Kea
to use reservations stored in MySQL or PostgreSQL. Kea provides a dedicated hook for managing reservations in a
database; section libdhcp_host_cmds.so: Host Commands provides detailed information. The Kea wiki provides some
examples of how to conduct common host reservation operations.

Note: In Kea, the maximum length of an option specified per-host-reservation is arbitrarily set to 4096 bytes.

8.3.8 Fine-Tuning DHCPv4 Host Reservation

The host reservation capability introduces additional restrictions for the allocation engine (the component of Kea that
selects an address for a client) during lease selection and renewal. In particular, three major checks are necessary. First,
when selecting a new lease, it is not sufficient for a candidate lease to simply not be in use by another DHCP client; it
also must not be reserved for another client. Similarly, when renewing a lease, an additional check must be performed
to see whether the address being renewed is reserved for another client. Finally, when a host renews an address, the
server must check whether there is a reservation for this host, which would mean the existing (dynamically allocated)
address should be revoked and the reserved one be used instead.

Some of those checks may be unnecessary in certain deployments, and not performing them may improve performance.
The Kea server provides the reservation-mode configuration parameter to select the types of reservations allowed
for a particular subnet. Each reservation type has different constraints for the checks to be performed by the server
when allocating or renewing a lease for the client. Although reservation-mode was deprecated in Kea 1.9.1, it is
still available; the allowed values are:

126 Chapter 8. The DHCPv4 Server

https://gitlab.isc.org/isc-projects/kea/wikis/designs/commands#23-host-reservations-hr-management

Kea Administrator Reference Manual Documentation, Release 2.4.0

¢ all - enables both in-pool and out-of-pool host reservation types. This setting is the default value, and is the
safest and most flexible. However, as all checks are conducted, it is also the slowest. It does not check against
global reservations.

e out-of-pool - allows only out-of-pool host reservations. With this setting in place, the server assumes that
all host reservations are for addresses that do not belong to the dynamic pool. Therefore, it can skip the reser-
vation checks when dealing with in-pool addresses, thus improving performance. Do not use this mode if any
reservations use in-pool addresses. Caution is advised when using this setting; Kea does not sanity-check the
reservations against reservation-mode and misconfiguration may cause problems.

¢ global - allows only global host reservations. With this setting in place, the server searches for reservations for
a client only among the defined global reservations. If an address is specified, the server skips the reservation
checks carried out in other modes, thus improving performance. Caution is advised when using this setting; Kea
does not sanity-check reservations when global is set, and misconfiguration may cause problems.

* disabled - host reservation support is disabled. As there are no reservations, the server skips all checks. Any
reservations defined are completely ignored. As checks are skipped, the server may operate faster in this mode.

Since Kea 1.9.1, the reservation-mode parameter is replaced by the reservations-global,
reservations-in-subnet, and reservations-out-of-pool flags. The flags can be activated independently and
can produce various combinations, some of which were not supported by the deprecated reservation-mode.

The reservation-mode parameter can be specified at:
* global level: .Dhcp4["reservation-mode"] (lowest priority: gets overridden by all others)
* subnet level: .Dhcp4.subnet4[]["reservation-mode"] (low priority)
* shared-network level: .Dhcp4["shared-networks"][]["reservation-mode"] (high priority)

¢ shared-network subnet-level: .Dhcp4["shared-networks"][].subnet4[]["reservation-mode"] (high-
est priority: overrides all others)

To decide which reservation-mode to choose, the following decision diagram may be useful:

| Is per-host configuration needed, such as |
| reserving specific addresses, |
| assigning specific options or |
| assigning packets to specific classes on per-device basis? |
+

R B T +
I I
no | yes|
| | e ettt e +
| | | For all given hosts, |
+--> "disabled" « +-->+ can the reserved resources |
| be used in all configured subnets? |
e e +—+
I I
e + Ino |yes
| Is | | |
| at least one reservation +<--+ "global" <--+
| used to reserve addresses? |
o +-—+

(continues on next page)

8.3. Host Reservations in DHCPv4 127

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

no | WG| —dAreeccocsoscossossssssssosses +
| | | Is high leases-per-second |
+--> "out-of-pool" +-->+ performance or efficient

Q | resource usage

I
I
| (CPU ticks, RAM usage, |
database roundtrips) |

I

important to your setup?

———————— +
|
yes| no
I
fmm e +
|
| e ittt +
+-->+ that the reserved
addresses

|
|
aren't part of the |
pools configured |
in the respective |
|

-+

I

I

I

| +
| I
I I
I I
I I
I I
| I
[| | Can it be guaranteed | |
I I
I I I
I | I
| | I
I I I
| | subnet? |
I + I
I I
| I
|

An example configuration that disables reservations looks as follows:

{
"Dhcp4d": {
"subnet4": [
{
"id": 1,
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
}
Ay
"reservation-mode": "disabled",
"subnet": "192.0.2.0/24"
}
]
}
}

An example configuration using global reservations is shown below:

{
"Dhcp4d": {
"reservation-mode": "global",
"reservations": [

(continues on next page)

128 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

{
"hostname": "host-one",
"hw-address": "01:bb:cc:dd:ee:ff"
},
{
"hostname": "host-two",
"hw-address": "02:bb:cc:dd:ee:ff"
}
1,
"subnet4": [
{
"id": 1,
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
h
Ay
"subnet": "192.0.2.0/24"
}
]

The meaning of the reservation flags are:
* reservations-global: fetch global reservations.

e reservations-in-subnet: fetch subnet reservations. For a shared network this includes all subnet members
of the shared network.

e reservations-out-of-pool: this makes sense only when the reservations-in-subnet flag is true.
When reservations-out-of-pool is true, the server assumes that all host reservations are for addresses
that do not belong to the dynamic pool. Therefore, it can skip the reservation checks when dealing with in-pool
addresses, thus improving performance. The server will not assign reserved addresses that are inside the dy-
namic pools to the respective clients. This also means that the addresses matching the respective reservations
from inside the dynamic pools (if any) can be dynamically assigned to any client.

The disabled value from the deprecated reservation-mode corresponds to:

{
"Dhcp4": {
"reservations-global": false,
"reservations-in-subnet": false
}
3

The global value from the deprecated reservation-mode corresponds to:

{
"Dhcp4": {
"reservations-global": true,
"reservations-in-subnet": false
}
}

8.3. Host Reservations in DHCPv4 129

Kea Administrator Reference Manual Documentation, Release 2.4.0

The out-of-pool value from the deprecated reservation-mode corresponds to:

{
"Dhcp4": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

And the all value from the deprecated reservation-mode corresponds to:

{
"Dhcp4": {
"reservations-global": false,
"reservations-in-subnet": true,
"reservations-out-of-pool"”: false
}
}

To activate both global and all, the following combination can be used:

{
"Dhcp4": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool"”: false
}
}

To activate both global and out-of-pool, the following combination can be used:

{
"Dhcp4": {
"reservations-global": true,
"reservations-in-subnet": true,
"reservations-out-of-pool": true
}
}

Enabling out-of-pool and disabling in-subnet at the same time is not recommended because out-of-pool applies
to host reservations in a subnet, which are fetched only when the in-subnet flag is true.

The parameter can be specified at the global, subnet, and shared-network levels.

An example configuration that disables reservations looks as follows:

{
"Dhcp4": {
"subnet4": [
{

"reservations-global": false,
"reservations-in-subnet": false,
"subnet": "192.0.2.0/24",

"id": 1

(continues on next page)

130 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

An example configuration using global reservations is shown below:

{
"Dhcp4d": {
"reservations": [
{
"hostname": "host-one",
"hw-address": "01:bb:cc:dd:ee:ff"
B
{
"hostname": "host-two",
"hw-address": "02:bb:cc:dd:ee:ff"
}
1,
"reservations-global": true,
"reservations-in-subnet": false,
"subnet4": [
{
"pools": [
{
"pool": "192.0.2.10-192.0.2.100"
3
Ay
"subnet": "192.0.2.0/24",
"id": 1
}
]
}
}

For more details regarding global reservations, see Global Reservations in DHCPv4.

Another aspect of host reservations is the different types of identifiers. Kea currently supports four types of identifiers:
hw-address, duid, client-id, and circuit-id. This is beneficial from a usability perspective; however, there is
one drawback. For each incoming packet, Kea has to extract each identifier type and then query the database to see if
there is a reservation by this particular identifier. If nothing is found, the next identifier is extracted and the next query
is issued. This process continues until either a reservation is found or all identifier types have been checked. Over time,
with an increasing number of supported identifier types, Kea would become slower and slower.

To address this problem, a parameter called host-reservation-identifiers is available. It takes a list of identifier
types as a parameter. Kea checks only those identifier types enumerated in host-reservation-identifiers. From
a performance perspective, the number of identifier types should be kept to a minimum, ideally one. If the deploy-
ment uses several reservation types, please enumerate them from most- to least-frequently used, as this increases the
chances of Kea finding the reservation using the fewest queries. An example of a host-reservation-identifiers
configuration looks as follows:

{
"host-reservation-identifiers": ["circuit-id", "hw-address", "duid", "client-id" 1],

(continues on next page)

8.3. Host Reservations in DHCPv4 131

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)
"subnet4": [

{
"subnet": "192.0.2.0/24",

If not specified, the default value is:

["host—reservation—identifiers": ["hw-address", "duid", "circuit-id", "client-id"]

Note: As soon as a host reservation is found the search is stopped so when a client has two host reservations using
different enabled identifier types the first is always returned and the second ignored. In other words, this is usually a
a configuration mistake. In rare cases when having two reservations for the same host makes sense, you can control
which of those will be used by ordering the list of identifier types in host-reservation-identifiers.

8.3.9 Global Reservations in DHCPv4

In some deployments, such as mobile, clients can roam within the network and certain parameters must be specified
regardless of the client's current location. To meet such a need, Kea offers a global reservation mechanism. The idea
behind it is that regular host reservations are tied to specific subnets, by using a specific subnet ID. Kea can specify a
global reservation that can be used in every subnet that has global reservations enabled.

This feature can be used to assign certain parameters, such as hostname or other dedicated, host-specific options. It
can also be used to assign addresses.

An address assigned via global host reservation must be feasible for the subnet the server selects for the client. In
other words, the address must lie within the subnet; otherwise, it is ignored and the server will attempt to dynamically
allocate an address. If the selected subnet belongs to a shared network, the server checks for feasibility against the
subnet's siblings, selecting the first in-range subnet. If no such subnet exists, the server falls back to dynamically
allocating the address.

Note: Prior torelease 2.3.5, the server did not perform feasibility checks on globally reserved addresses, which allowed
the server to be configured to hand out nonsensical leases for arbitrary address values. Later versions of Kea perform
these checks.

To use global host reservations, a configuration similar to the following can be used:

"Dhcp4": {
This specifies global reservations.
They will apply to all subnets that
have global reservations enabled.

"reservations": [

{
"hw-address": "aa:bb:cc:dd:ee:ff",
"hostname": "hw-host-dynamic"

(continues on next page)

132 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

1
{
"hw-address": "01:02:03:04:05:06",
"hostname": "hw-host-fixed",
Use of IP addresses in global reservations is risky.
If used outside of a matching subnet, such as 192.0.1.0/24,
it will result in a broken configuration being handed
to the client.
"ip-address": "192.0.1.77"
},
{
"duid": "01:02:03:04:05",
"hostname": "duid-host"
1
{
"circuit-id": "'charter950'",
"hostname": "circuit-id-host"
1
{
"client-id": "01:11:22:33:44:55:66",
"hostname": "client-id-host"
}
1,

"valid-lifetime": 600,
"subnet4": [

{
"id": 1,
"subnet": "10.0.0.0/24",
It is replaced by the "reservations-global",
"reservations-in-subnet", and "reservations-out-of-pool"
parameters.
"reservation-mode": '"global",
Specify if the server should look up global reservations.
"reservations-global": true,
Specify if the server should look up in-subnet reservations.
"reservations-in-subnet": false,
Specify if the server can assume that all reserved addresses
are out-of-pool. It can be ignored because '"reservations-in-subnet"
is false.
"reservations-out-of-pool": false,
"pools": [{ "pool": "10.0.0.10-10.0.0.100" }]
}
]

When using database backends, the global host reservations are distinguished from regular reservations by using a
subnet-id value of 0

8.3. Host Reservations in DHCPv4 133

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.3.10 Pool Selection with Client Class Reservations

Client classes can be specified in the Kea configuration file and/or via host reservations. The classes specified in the Kea
configuration file are evaluated immediately after receiving the DHCP packet and therefore can be used to influence
subnet selection using the client-class parameter specified in the subnet scope. The classes specified within the
host reservations are fetched and assigned to the packet after the server has already selected a subnet for the client.
This means that the client class specified within a host reservation cannot be used to influence subnet assignment for
this client, unless the subnet belongs to a shared network. If the subnet belongs to a shared network, the server may
dynamically change the subnet assignment while trying to allocate a lease. If the subnet does not belong to a shared
network, the subnet is not changed once selected.

If the subnet does not belong to a shared network, it is possible to use host reservation-based client classification to
select an address pool within the subnet as follows:

"Dhcp4": {
"client-classes": [
{
"name": "reserved_class"
e
{
"name": "unreserved_class",
"test": "not member('reserved_class')"
}
1,
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": ["reserved_class"]
}
ie
"pools": [
{
"pool": "192.0.2.10-192.0.2.20",
"client-class": "reserved_class"
Fe
{
"pool": "192.0.2.30-192.0.2.40",
"client-class": "unreserved_class"
}
]
}
]
}

The reserved_class is declared without the test parameter because it may only be assigned to the client via
the host reservation mechanism. The second class, unreserved_class, is assigned to clients which do not be-
long to the reserved_class. The first pool within the subnet is only used for clients having a reservation for the
reserved_class. The second pool is used for clients not having such a reservation. The configuration snippet in-
cludes one host reservation which causes the client with the MAC address aa:bb:cc:dd:ee:fe to be assigned to the
reserved_class. Thus, this client will be given an IP address from the first address pool.

134 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.3.11 Subnet Selection with Client Class Reservations

There is one specific use case when subnet selection may be influenced by client classes specified within host reserva-
tions: when the client belongs to a shared network. In such a case it is possible to use classification to select a subnet
within this shared network. Consider the following example:

"Dhcpd": {

"client-classes": [
{
"name": "reserved_class"
if
{
"name": "unreserved_class",
"test": "not member('reserved_class')"
}
1,
"reservations": [
{
"hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": ["reserved_class"]
3
1,

It is replaced by the "reservations-global",

"reservations-in-subnet", and "reservations-out-of-pool" parameters.
Specify if the server should look up global reservations.
"reservations-global": true,

Specify if the server should look up in-subnet reservations.
"reservations-in-subnet": false,

Specify if the server can assume that all reserved addresses
are out-of-pool. It can be ignored because '"reservations-in-subnet"
is false, but if specified, it is inherited by "shared-networks"
and "subnet4" levels.
"reservations-out-of-pool": false,
"shared-networks": [
{
"subnet4": [
{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.10-192.0.2.20",
"client-class": "reserved_class"
}
1
e
{
"id": 2,
"subnet": "192.0.3.0/24",
"pools": [
{

"pool": "192.0.3.10-192.0.3.20",
"client-class": "unreserved_class"

(continues on next page)

8.3. Host Reservations in DHCPv4

135

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

This is similar to the example described in Pool Selection with Client Class Reservations. This time, however, there
are two subnets, each of which has a pool associated with a different class. The clients that do not have a reservation
for the reserved_class are assigned an address from the subnet 192.0.3.0/24. Clients with a reservation for the
reserved_class are assigned an address from the subnet 192.0.2.0/24. The subnets must belong to the same shared
network. In addition, the reservation for the client class must be specified at the global scope (global reservation) and
reservations-global must be set to true.

In the example above, the client-class could also be specified at the subnet level rather than the pool level, and
would yield the same effect.

8.3.12 Multiple Reservations for the Same IP

Host reservations were designed to preclude the creation of multiple reservations for the same IP address within a
particular subnet, to avoid having two different clients compete for the same address. When using the default settings,
the server returns a configuration error when it finds two or more reservations for the same IP address within a subnet in
the Kea configuration file. 1ibdhcp_host_cmds. so returns an error in response to the reservation-add command
when it detects that the reservation exists in the database for the IP address for which the new reservation is being
added.

In some deployments a single host can select one of several network interfaces to communicate with the DHCP server,
and the server must assign the same IP address to the host regardless of the interface used. Since each interface
is assigned a different MAC address, it implies that several host reservations must be created to associate all of the
MAC addresses present on this host with IP addresses. Using different IP addresses for each interface is impractical
and is considered a waste of the IPv4 address space, especially since the host typically uses only one interface for
communication with the server, hence only one IP address is in use.

This causes a need to create multiple host reservations for a single IP address within a subnet; this is supported since the
Kea 1.9.1 release as an optional mode of operation, enabled with the ip-reservations-unique global parameter.

The ip-reservations-unique is a boolean parameter that defaults to true, which forbids the specification of more
than one reservation for the same IP address within a given subnet. Setting this parameter to false allows such reser-
vations to be created both in the Kea configuration file and in the host database backend, via 1ibdhcp_host_cmds. so.

Setting ip-reservations-unique to false when using memfile, MySQL or PostgreSQL is supported. This
setting is not supported when using Host Cache (see libdhcp_host_cache.so: Host Cache Reservations for Im-
proved Performance), and the RADIUS backend (see libdhcp_radius.so: RADIUS Server Support). These reserva-
tion backends simply do not support multiple reservations for the same IP. If either of these hooks are loaded and
ip-reservations-unique is set to false, then a configuration error will be emitted and the server will fail to start.

Note: When ip-reservations-unique is set to true (the default value), the server ensures that IP reservations are
unique for a subnet within a single host backend and/or Kea configuration file. It does not guarantee that the reservations
are unique across multiple backends.

The following is an example configuration with two reservations for the same IP address but different MAC addresses:

136 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

"Dhcp4": {
"ip-reservations-unique": false,
"subnet4": [

{
"id": 1,
"subnet": "192.0.2.0/24",
"reservations": [
{
"hw-address": "la:1b:1c:1d:1le:1£f",
"ip-address": "192.0.2.11"
B
{
"hw-address": "2a:2b:2c:2d:2e:2f",
"ip-address": "192.0.2.11"
}
1
}

It is possible to control the ip-reservations-unique parameter via the Configuration Backend in DHCPv4. If the
new setting of this parameter conflicts with the currently used backends (i.e. backends do not support the new setting),
the new setting is ignored and a warning log message is generated. The backends continue to use the default setting,
expecting that IP reservations are unique within each subnet. To allow the creation of non-unique IP reservations, the
administrator must remove the backends which lack support for them from the configuration file.

Administrators must be careful when they have been using multiple reservations for the same IP address and later decide
to return to the default mode in which this is no longer allowed. They must make sure that at most one reservation for
a given IP address exists within a subnet, prior to switching back to the default mode. If such duplicates are left in
the configuration file, the server reports a configuration error. Leaving such reservations in the host databases does not
cause configuration errors but may lead to lease allocation errors during the server's operation, when it unexpectedly
finds multiple reservations for the same IP address.

Note: Currently the Kea server does not verify whether multiple reservations for the same IP address exist in MySQL
and/or PostgreSQL host databases when ip-reservations-unique is updated from true to false. This may cause
issues with lease allocations. The administrator must ensure that there is at most one reservation for each IP address
within each subnet, prior to the configuration update.

The reservations-lookup-first is a boolean parameter which controls whether host reservations lookup should
be performed before lease lookup. This parameter has effect only when multi-threading is disabled. When multi-
threading is enabled, host reservations lookup is always performed first to avoid lease-lookup resource locking. The
reservations-lookup-first parameter defaults to false when multi-threading is disabled.

8.3. Host Reservations in DHCPv4 137

Kea Administrator Reference Manual Documentation, Release 2.4.0

8.3.13 Host Reservations as Basic Access Control

Starting with Kea 2.3.5, it is possible to define a host reservation that contains just an identifier, without any address,
options, or values. In some deployments this is useful, as the hosts that have a reservation belong to the KNOWN class
while others do not. This can be used as a basic access control mechanism.

The following example demonstrates this concept. It indicates a single IPv4 subnet and all clients will get an address
from it. However, only known clients (those that have reservations) will get their default router configured. Empty
reservations i.e. reservations that only have the identification criterion, can be specifically useful in this regard of
making the clients known.

"Dhcp4": {
"client-classes": [
{
"name": "KNOWN",
"option-data": [
{
"name": "routers",
"data": "192.0.2.250"
}
1
}
1,

"reservations": [
// Clients on this list will be added to the KNOWN class.
{ "hw-address": "aa:bb:cc:dd:ee:fe" },
{ "hw-address": "11:22:33:44:55:66" }

1,

"reservations-in-subnet": true,

"subnet4": [

{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1-192.0.2.200"
}
]
}

This concept can be extended further. A good real-life scenario might be a situation where some customers of an ISP
have not paid their bills. A new class can be defined to use an alternative default router that, instead of relaying traffic,
redirects those customers to a captive portal urging them to bring their accounts up to date.

"Dhcp4d": {
"client-classes": [
{
"name": "blocked",
"option-data": [
{
"name": "routers",

(continues on next page)

138 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"data": "192.0.2.251"

}
1,
"reservations": [
// Clients on this list will be added to the KNOWN class. Some
// will also be added to the blocked class.
{ "hw-address": "aa:bb:cc:dd:ee:fe",
"client-classes": ["blocked"] },
{ "hw-address": "11:22:33:44:55:66" }
1,

"reservations-in-subnet": true,

"subnet4": [

{
"id": 1,
"subnet": "192.0.2.0/24",
"pools": [
{
"pool": "192.0.2.1-192.0.2.200"
}
g
"option-data": [
{
"name": "routers",
"data": "192.0.2.250"
}
1
}

8.4 Shared Networks in DHCPv4

DHCEP servers use subnet information in two ways. It is used to both determine the point of attachment, i.e. where the
client is connected to the network, and to group information pertaining to a specific location in the network. Sometimes
it is useful to have more than one logical IP subnet deployed on the same physical link. Understanding that two or more
subnets are used on the same link requires additional logic in the DHCP server. This capability is called "shared
networks" in Kea, and sometimes also "shared subnets"; in Microsoft's nomenclature it is called "multinet."

There are many cases where the shared networks feature is useful; here we explain just a handful of the most common
ones. The first and by far most common use case is an existing IPv4 network that has grown and is running out
of available address space. Rather than migrating all devices to a new, larger subnet, it is easier to simply configure
additional subnets on top of the existing one. Sometimes, due to address space fragmentation (e.g. only many disjointed
/24s are available), this is the only choice. Also, configuring additional subnets has the advantage of not disrupting the
operation of existing devices.

Another very frequent use case comes from cable networks. There are two types of devices in cable networks: cable
modems and the end-user devices behind them. It is a common practice to use different subnets for cable modems
to prevent users from tinkering with them. In this case, the distinction is based on the type of device, rather than on
address-space exhaustion.

8.4. Shared Networks in DHCPv4 139

Kea Administrator Reference Manual Documentation, Release 2.4.0

A client connected to a shared network may be assigned an address from any of the pools defined within the subnets
belonging to the shared network. Internally, the server selects one of the subnets belonging to a shared network and tries
to allocate an address from this subnet. If the server is unable to allocate an address from the selected subnet (e.g., due
to address-pool exhaustion), it uses another subnet from the same shared network and tries to allocate an address from
this subnet. The server typically allocates all addresses available in a given subnet before it starts allocating addresses
from other subnets belonging to the same shared network. However, in certain situations the client can be allocated an
address from another subnet before the address pools in the first subnet get exhausted; this sometimes occurs when the
client provides a hint that belongs to another subnet, or the client has reservations in a subnet other than the default.

Note: Deployments should not assume that Kea waits until it has allocated all the addresses from the first subnet in a
shared network before allocating addresses from other subnets.

To define a shared network, an additional configuration scope is introduced:

{
"Dhcp4d": {
"shared-networks": [
{
Name of the shared network. It may be an arbitrary string
and it must be unique among all shared networks.
"name": "my-secret-lair-level-1",

The subnet selector can be specified at the shared-network level.

Subnets from this shared network will be selected for directly

connected clients sending requests to the server's "eth0®" interface.
"interface": "eth0",

This starts a list of subnets in this shared network.
There are two subnets in this example.
"subnet4": [

{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.1 - 10.0.0.99" }]
e
{
"id": 2,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.100 - 192.0.2.199" }]
}

}
1,

end of shared-networks

It is likely that in the network there will be a mix of regular,
"plain" subnets and shared networks. It is perfectly valid to mix
them in the same configuration file.

#

This is a regular subnet. It is not part of any shared network.
"subnet4": [

{

(continues on next page)

140 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"id": 3,
"subnet": "192.0.3.0/24",
"pools": [{ "pool": "192.0.3.1 - 192.0.3.200" } 1,
"interface": "ethl"
}
]
}
}

As demonstrated in the example, it is possible to mix shared and regular ("plain") subnets. Each shared network must
have a unique name. This is similar to the ID for subnets, but gives administrators more flexibility. It is used for logging,
but also internally for identifying shared networks.

In principle it makes sense to define only shared networks that consist of two or more subnets. However, for testing
purposes, an empty subnet or a network with just a single subnet is allowed. This is not a recommended practice in
production networks, as the shared network logic requires additional processing and thus lowers the server's perfor-
mance. To avoid unnecessary performance degradation, shared subnets should only be defined when required by the
deployment.

Shared networks provide the ability to specify many parameters in the shared network scope that apply to all subnets
within it. If necessary, it is possible to specify a parameter in the shared-network scope and then override its value in
the subnet scope. For example:

{
"shared-networks": [
{
"name": "lab-network3",
"interface": "eth0®",

This applies to all subnets in this shared network, unless
values are overridden on subnet scope.
"valid-lifetime": 600,

This option is made available to all subnets in this shared
network.
"option-data": [
{
"name": "log-servers",
"data": "1.2.3.4"
}
Js

"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.1 - 10.0.0.99" } 1],

This particular subnet uses different values.
"valid-lifetime": 1200,

"option-data": [

{

(continues on next page)

8.4. Shared Networks in DHCPv4 141

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued from previous page)

"name": "log-servers",
"data": "10.0.0.254"
3,
{
"name": "routers",
"data": "10.0.0.254"
11
e
{
"id": 2,
"subnet": "192.0.2.0/24",
"pools": [{ "pool": "192.0.2.100 - 192.0.2.199" }],
This subnet does not specify its own valid-lifetime value,
so it is inherited from shared network scope.
"option-data": [
{
"name": "routers",
"data": "192.0.2.1"
1
}
]
}
1,

In this example, there is a Log-servers option defined that is available to clients in both subnets in this shared network.
Also, the valid lifetime is set to 10 minutes (600s). However, the first subnet overrides some of the values (the valid
lifetime is 20 minutes, there is a different IP address for log-servers), but also adds its own option (the router address).
Assuming a client asking for router and log-servers options is assigned a lease from this subnet, it will get a lease
for 20 minutes and a log-servers and routers value of 10.0.0.254. If the same client is assigned to the second subnet,
it will get a 10-minute lease, a log-servers value of 1.2.3.4, and routers set to 192.0.2.1.

8.4.1 Local and Relayed Traffic in Shared Networks

It is possible to specify an interface name at the shared-network level, to tell the server that this specific shared network
is reachable directly (not via relays) using the local network interface. As all subnets in a shared network are expected
to be used on the same physical link, it is a configuration error to attempt to define a shared network using subnets that
are reachable over different interfaces. In other words, all subnets within the shared network must have the same value
for the interface parameter. The following configuration is an example of what NOT to do:

{
"shared-networks": [
{
"name": "office-floor-2",
"subnet4": [
{
"id": 1,
"subnet": "10.0.0.0/8",
"pools": [{ "pool": "10.0.0.1 - 10.0.0.99" } 1],

(continues on next page)

142 Chapter 8. The DHCPv4 Server

Kea Administrator Reference Manual Documentation, Release 2.4.0

(continued f